INFORME DE MONITOREO AMBIENTAL PARTICIPATIVO DEL PROYECTO MINERO ARIANAMARCAPOMACOCHA YAULI-JUNÍN

ARIANA OPERACIONES S.A.C

ELABORADO POR: ANALYTICAL LABORATORY E.I.R.L

INFORME: IM-22-228

ORDEN DE SERVICIO: OS-22-0990

CONTROL DE REVISIONES		
Elaborado	Revisión	
Josué Orlandini Jefe de Operaciones	Liz Y. Quispe Quispe CIP N°211662 Jefa de Laboratorio	
an	Lyss	

INDICE

1. INTRODUCCIÓN	.3
2. OBJETIVOS	.3
2.1.OBJETIVO GENERAL	.3
2.2.OBJETIVOS ESPECÍFICOS	.3
3. REFERENCIAS	.3
3.1. DATOS DE LA ENTIDAD DE MONITOREO	.3
3.2. PERSONAL QUE REALIZA EL MONITOREO	4
3.3. LABORATORIO DE ENSAYO	4
4. NORMATIVA REFERENCIAL	4
5. ALCANCE	4
5.1. ALCANCE NORMATIVA	4
6. DESARROLLO DEL MONITOREO	.7
7. PROCEDIMIENTOS1	.2
7.1.METODOLOGIAS Y EQUIPOS UTILIZADOS1	.2
8. RESULTADOS DEL MONITOREO1	.4
9. CONCLUSIONES2	23
ANEXOS2	4
ANEXO I : INFORMES DE ENSAYO DE LABORATORIO 2	25
ANEXO II : REPORTE FOTOGRÁFICO2	26
ANEXO III : CADENAS DE CUSTODIA2	27
ANEXO IV : CERTIFICADOS DE CALIBRACIÓN2	28
ANEXO V : CERTIFICADOS DE ACREDITACIÓN2	9

1. INTRODUCCIÓN

A solicitud de **ARIANA OPERACIONES MINERAS S.A.C.** se coordinó realizar el seguimiento a los componentes ambientales del proyecto "MONITOREO AMBIENTAL PARTICIPATIVO DEL PROYECTO MINERO ARIANA – MARCAPOMACOCHA – YAULI-JUNÍN".

El presente informe, considera el monitoreo en calidad de aire, meteorológico, calidad de agua, calidad de aire y ruido ambiental, el que fue realizado del 10 al 11 de marzo del 2022, en función de los instructivos establecidos en los protocolos de monitoreo ambiental vigentes y los procedimientos internos de inspección de Analytical Laboratory E.I.R.L.

2. OBJETIVOS

2.1. OBJETIVO GENERAL

 Realizar la toma de muestra, analizar y comparar con los Estándares de Calidad Ambiental los resultados de los parámetros establecidos en los puntos de monitoreo para Calidad de Aire, Agua y Ruido Ambiental.

2.2. OBJETIVOS ESPECÍFICOS

- Realizar la inspección, toma de muestra de los parámetros de las estaciones de monitoreo establecidas y planificar el envío de muestras al laboratorio para su posterior análisis.
- Determinar la concentración de material Particulado y gases en las estaciones de monitoreo y compararlas con los estándares de calidad ambiental para aire (Decreto Supremo N°003-2017-MINAM).
- Determinar y evaluar los niveles de ruido ambiental (diurno y nocturno), y compararlos con los estándares de calidad ambiental para ruido (Decreto Supremo N°085-2003-PCM).
- Determinar la concentración de parámetros campo, físico-químicos, microbiológicos en el agua y compararlas con el Estándar de Calidad de Agua (Decreto Supremo N°004-2017-MINAM).

3. REFERENCIAS

3.1. DATOS DE LA ENTIDAD DE MONITOREO

ANALYTICAL LABORATORY E.I.R.L.

Prolongación Zarumilla Mz. D2. Lt. 3. Daniel Alcides Carrión - Bellavista - Callao. Entidad Acreditada por INACAL-DA con acreditación NTP-ISO/IEC 17025:2017 (Registro Nº LE-096).

3.2. PERSONAL QUE REALIZA EL MONITOREO

Para el trabajo de campo se conformó con el siguiente analista:

Cuadro N° 01: Personal Técnico

Nombres y Apellidos	DNI	Cargo/Responsabilidad
Fernando Fernández Martínez	40106608	Analista de campo

3.3. LABORATORIO DE ENSAYO

Los análisis de las muestras colectadas fueron realizados en el laboratorio ANALYTICAL LABORATORY E.I.R.L. acreditado por INACAL-DA con acreditación NTP ISO/IEC 17025, donde los resultados serán reflejados en los informes de ensayo adjuntos.

4. NORMATIVA REFERENCIAL

- Aprueban los Estándares de Calidad Ambiental para aire y establecen disposiciones complementarias, mediante el Decreto Supremo N°003-2017-MINAM.
- Aprueban el reglamento de Estándares de Calidad Ambiental para ruido y establecen disposiciones complementarias, mediante el Decreto Supremo N°085-2003-PCM.
- Ley N° 28611, Ley General del Ambiente.
- Aprueban el reglamento de Estándar de Calidad Ambiental para agua y establecen Disposiciones Complementarias, mediante el Decreto Supremo N°004-2017- MINAM.

5. ALCANCE

5.1. ALCANCE NORMATIVA

 a) Aprueban el Reglamento de Estándares de Calidad Ambiental (ECA) para Ruido y establecen disposiciones complementarias, mediante el Decreto Supremo N°085-2003-PCM publicado el 30 de octubre del 2003.

A continuación, en el cuadro siguiente se detalla los valores de comparación.

Tabla N°01: Estándares de Calidad Ambiental para Ruido

ZONAS DE APLICACIÓN	VALORES EXPRESADOS EN LAEQT		
ZONAS DE AFLICACION	HORARIO DIURNO	HORARIO NOCTURNO	
Zona de Protección especial	50	40	
Zona Residencial	60	50	
Zona Comercial	70	60	
Zona Industrial	80	70	

Fuente: D.S. N°085-2003-PCM.

- b) Aprueban los Estándares de Calidad Ambiental (ECA) para Aire y establecen disposiciones complementarias, mediante el Decreto Supremo N°003-2017-MINAM.
 - A continuación, en el cuadro siguiente se detalla los valores de comparación de los parámetros medidos:

Tabla N°02: Estándares de Calidad Ambiental para Aire

Tabla N'02: Estandares de Calidad Ambiental para Aire					
PARÁMETROS	PERÍODO	VALOR (ug/ m³)	CRITERIOS DE EVALUACIÓN	MÉTODO DE ANÁLISIS ⁽¹⁾	
Benceno(C ₆ H ₆)	Anual	2	Media aritmética anual	Cromatografía de gases	
Dióxido de Azufre (SO ₂)	24 horas	250	NE más de 7 veces al año	Fluorescencia ultravioleta (método automático)	
Dióxido de	1 hora	200	NE más de 24 veces al año	Quimioluminiscencia (método	
Nitrógeno (NO ₂)	Anual	100	Media aritmética anual	automático)	
Material	24 horas	50	NE más de 7 veces al año	Separación inercia/filtración	
Particulado PM _{2.5}	Anual	25	Media aritmética anual	(gravimetría)	
Material	24 horas	100	NE más de 7 veces al año	Separación inercia/filtración	
Particulado PM ₁₀	Anual	50	Media aritmética anual	(gravimetría)	
Mercurio gaseoso total (Hg) (2)	24horas	2	No exceder	Espectrometría de absorción atómica de vapor frío (CVAAS) o espectrometría de fluorescencia atómica de vapor frio (CVAFS) o Espectrometría de absorción atómica Zeeman (Métodos automáticos)	
Monóxido de	Monóxido de 1hora 30000		NE más de 1 vez al año	Infrarrojo no dispersivo (NDIR)	
Carbono (CO)	8horas	10000	Media aritmética móvil	(Método automático)	
Ozono (O ₃)	8horas	100	Máxima media diaria NE más de 24 veces al año	Fotometría de absorción ultravioleta (Método automático)	
	Mensual	1.5	NE más de 24 veces al año	Método para PM10	
Plomo LV (PM ₁₀)	Anual	0.5	Media aritmética de los valores mensuales	(Espectrofotometría de absorción atómica)	
Sulfuro de Hidrógeno (H ₂ S)	24horas	150	Media aritmética	Fluorescencia ultravioleta (método automático)	

NE: No Exceder

⁽¹⁾ O método equivalente aprobado.

⁽²⁾ El estándar de calidad ambiental para mercurio gaseoso total entrará en vigencia al día siguiente de la publicación del Protocolo Nacional de Monitoreo de la Calidad Ambiental del Aire, de conformidad con lo establecido en la Sétima Disposición Complementaria Final del presente Decreto Supremo.

c) Para las estaciones de Calidad de Agua Natural Superficial, se empleará como comparativo de los valores establecidos en el Decreto Supremo N°004-2017-MINAM. "Estándar de calidad Ambiental (ECA) para agua", Categoría 4: Conservación del ambiente acuático, Subcategoría E1: Lagunas y lagos.

Tabla N°03: Estándares de Calidad Ambiental para Aqua

Tubla IV 00: Est	aridares de Sandaa 7	Ambientai para Agua	
PARÁMETROS	UNIDAD DE MEDIDA	E1: LAGUNAS Y LAGOS	
	Físico - Químico	0	
Aceites y grasas	mg/L	5	
Cianuro Libre	mg/L	0.0052	
Color	mg/L	20(A)	
Clorofila A	mg/L	0.008	
Conductividad	uS/cm	1000	
Demanda Bioquímica de Oxigeno (DBO₅)	mg/L	5	
Demanda Química de Oxigeno (DQO)	mg/L	40	
Fenoles	mg/L	2.56	
Fósforo total	mg/L	0.035	
Nitratos	mg/L	13	
Amoniaco	mg/L	(1)	
Oxígeno Disuelto (valor mínimo)	mg/L	≥5	
Sólidos Suspendidos Totales	mg/L	≤25	
(pH)	Unidad de pH	6,5 – 9,0	
Temperatura	°C	Δ3	
INORGÁNICOS			
Antimonio	mg/L	0.64	
Arsénico	mg/L	0.15	
Bario	mg/L	0.7	
Cadmio Disuelto	mg/L	0.00025	
Cobre	mg/L	0.1	
Cromo total	mg/L	0.011	
Mercurio	mg/L	0.0001	
Níquel	mg/L	0.052	
Plomo	mg/L	0.0025	
Selenio	mg/L	0.005	
Talio	mg/L	0.0008	
Zinc	mg/L	0.12	
MICROBIOLOGICOS Y PARASITOLÓGICO			
Coliformes Termotolerantes	NMP/100ml	1000	

d) Para las estaciones de Calidad de Agua Superficial, se empleará como comparativo los valores establecidos en el Decreto Supremo N°004-2017-MINAM "Estándar de Calidad Ambiental (ECA) para agua", Categoría 3: Riego de Vegetales y Bebidas de animales, Subcategoría D1: Riego de Vegetales (Agua para riego no restringido y agua para riego restringido) y D2: Bebidas de animales.

Tabla N°04: Estándares de Calidad Ambiental para Agua

Tabla N 04. Estandares de Calidad Ambiental para Agua				
PARÁMETROS	UNIDAD DE	D1: RIEGO DE VEGETALES		D2: BEBIDAS DE ANIMALES
	MEDIDA	AGUA PARA RIEGO NO RESTRINGIDO	AGUA PARA RIEGO RESTRINGIDO	BEBIDAS DE ANIMALES
	Fís	ICO - QUÍMICO		
Aceites y grasas	mg/L	5		10
Bicarbonatos	mg/L	518	8	**
Cianuro Wad	mg/L	0.1		0.1
Cloruros	mg/L	500	0	**
Conductividad	uS/cm	250	0	5000
Demanda Bioquímica de Oxigeno (DBO ₅)	mg/L	15	i	15
Demanda Química de Oxigeno (DQO)	mg/L	40		40
Detergentes (SAAM)	mg/L	0.2		0.5
Fenoles	mg/L	0.00)2	0.01
Fluoruros	mg/L	1		**
Nitratos + nitritos	mg/L	100		100
Nitritos	mg/L	10		10
Oxígeno Disuelto (valor mínimo)	mg/L	≥4		≥5
(pH)	Unidad de pH	6,5 – 8,5		6,5-8,4
Sulfatos	mg/L	1000		1000
Temperatura	°C	Δ3	3	Δ3
		DRGÁNICOS		
Aluminio	mg/L	5		5
Arsénico	mg/L	0.1		0.2
Bario	mg/L	0.7		**
Berilio	mg/L	0.1		0.1
Boro	mg/L	1		5
Cadmio	mg/L	0.0		0.05
Cobre	mg/L	0.2		0.5
Cobalto	mg/L	0.0		<u> </u>
Cromo total	mg/L		0.1	
Hierro	mg/L	5		**
Litio	mg/L	2.5		2.5 250
Magnesio	mg/L			0.2
Manganeso	mg/L	0.2		
Mercurio	mg/L			0.01
Níquel Plomo	mg/L mg/l	0.2		0.05
Selenio	mg/L mg/L			0.05
Zinc	mg/L	0.02		24
ZIIIC	MICROBIOLOGICOS Y PARASITOLÓGICO			<u> </u>
Coliformes termotolerantes				1000
Δ 3: significa variación de 3 grad				

 $[\]Delta$ 3: significa variación de 3 grados Celsius respecto al promedio mensual multianual del área evaluada.

6. DESARROLLO DEL MONITOREO

La localización de los Puntos de Muestreo se realizó mediante el uso de un GPS (Sistema WGS 84), obteniendo las coordenadas UTM de cada punto de muestreo de la siguiente forma:

^(**) No presenta valor en ese parámetro para la sub categoría.

Cuadro N° 02: Coordenadas UTM de los Puntos de Calidad Ambiental

CALIDAD DE AIRE					
ITEM	PUNTO DE MUESTREO	DESCRIPCION	COORDENADAS UTM- WGS84		
	WIGESTREG		ESTE	NORTE	
1	MA-2	A barlovento de las operaciones del proyecto a 1.3 km del depósito de relaves.	0356176	8726137	
2	MA-3	A sotavento de las operaciones del proyecto a 2.3 km del depósito de relaves.	0357899	8729319	
		CALIDAD DE RUIDO			
ITEM	PUNTO DE MUESTREO	DESCRIPCION	COORDENADAS UTM- WGS84		
	WIOLSTREO		ESTE	NORTE	
1	MA-2	A barlovento de las operaciones del proyecto a 1.3 km del depósito de relaves.	0356176	8726137	
2	MA-3	A sotavento de las operaciones del proyecto a 2.3 km del depósito de relaves.	0357899	8729319	
CALIDAD DE AGUA					
ITEM	ITEM PUNTO DE DESCRIPCION		COORDENA WGS	884	
	mozorkzo		ESTE	NORTE	
1	MW-2	Laguna Pucococha, a 1500 m al sureste del campamento.	0356449	8729399	
2	MW-5	Quebrada Iscomachay, a 800m aguas abajo del depósito de 0357817 872 relaves.		8728562	
3	MW-6	Río Carispaccha a 100m, aguas arriba del punto de vertimiento del 0358102 8729 efluente industrial.		8729943	
4	MW-7	Rio Carispaccha a 110m, aguas abajo del punto de vertimiento del efluente doméstico.	0358137	8730157	

Fuente: PROYECTO MINERO ARIANA.

Imagen N° 1: Ubicación de las estaciones de monitoreo de Calidad de Aire

Fuente: (Google Earth)

Imagen N° 2: Ubicación de la estación de Monitoreo de Ruido Ambiental

Fuente: (Google Earth)

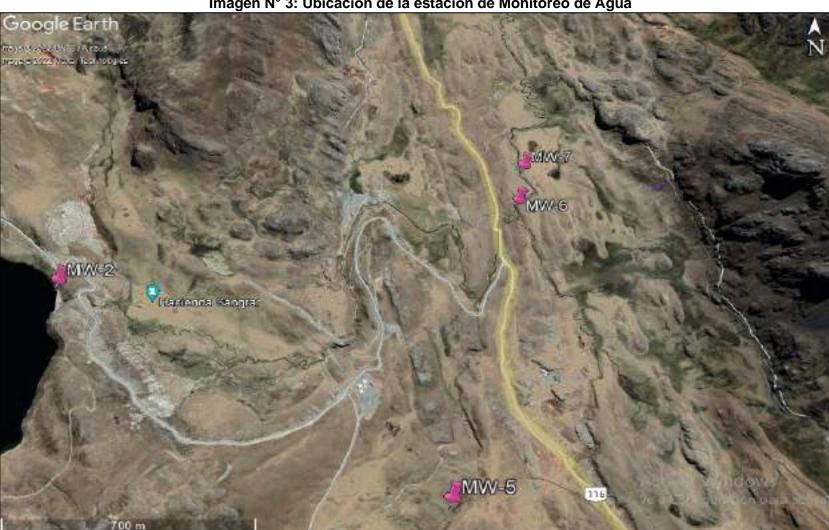


Imagen N° 3: Ubicación de la estación de Monitoreo de Agua

Fuente: (Google Earth)

7. PROCEDIMIENTOS

Los trabajos de monitoreo se realizaron de acuerdo a los siguientes instructivos internos:

Cuadro N° 03: Procedimientos e Instructivos Utilizados

Código	Τίτυιο		
	INSPECCIÓN GENERALES		
P-OPE-1	MUESTREO		
	INSPECCIÓN ESPECÍFICAS		
I-OPE-1.2	MUESTREO DE AIRE		
I-OPE-1.12	MUESTREO DE AGUA		
I-OPE-1.13	MUESTREO DE RUIDO AMBIENTAL		

7.1. METODOLOGIAS Y EQUIPOS UTILIZADOS

7.1.1. MONITOREO DE CALIDAD DE AIRE

Partículas en Suspensión Menores a 10, 2.5 micras y Gases

Para el monitoreo de PM_{10} y $PM_{2.5}$ se utilizó equipo de alto volumen y equipo de bajo volumen, cuyo funcionamiento consiste en aspirar aire del ambiente a flujo constante de $1.13m^3$ y 16.7 l/min dentro de un orificio de forma especial donde el material particulado en suspensión es separado inercialmente en fracciones de uno o más tamaños dentro del rango de tamaños de PM_{10} y $PM_{2.5}$. Las partículas son colectadas durante un periodo de muestreo de 24 horas. Para gases se utiliza tren de muestreo el cual se complementa con un rotámetro (tiene un intervalo de medición 0.1 L/min a 1.0L/min) y un manómetro para medir la presión o densidad del aire. Los resultados son expresados en ug/m³.

Cuadro N°04: Equipo GPS

Equipo	Código	Marca / Modelo
GPS	EM-OPE-332	GARMIN / EXTREX 10

Fuente: Elaboración Propia

Cuadro N° 05: Equipo Muestreador de Calidad de Aire PM₁₀, PM_{2.5} y Gases

Descripción Técnica				
Equipo	Código	N° Serie	Marca / Modelo	
Muestreador de partícula	EM-OPE-1394	P6233TSP	TISCH / TE-10557	
Muestreador de partícula	EM-OPE-551	P9482X	THERMO SCIENTIFIC / G10557	
Muestreador de partícula	EM-OPE-06	P92251X	Thermo Scientific / VFC	
Muestreador de partícula	EM-OPE-1133	P9680X	THERMO SCIENTIFIC/ G10557	
Rotámetro	EM-OPE-493	No indica	Dwyer / No indica	

Fuente: Elaboración Propia

Cuadro N° 05: Metodología de Análisis de Laboratorio

Parámetro	Referencia del Método
Material particulado PM ₁₀	EPA –Compendium Method IO-2.1-1999
Material particulado PM _{2.5}	EPA CFR 40. Part 50 Appendix L. 2014
Benceno NTP 712.107:2020	
Dióxido de azufre (SO ₂)	EPA CFR 40. Appendix A-2 to part 50. 2019
Sulfuro de Hidrógeno	COVENIN 3571: 2000. (Validado-Modificado). 2015
Dióxido de Nitrógeno	ASTM D1607-91 - 2011
Monóxido de carbono (CO)	Peter O. Warner (Validado-Modificado). 2018

Fuente: Analytical Laboratory E.I.R.L.

7.1.2. PARÁMETROS METEOROLÓGICOS

La caracterización meteorológica de la zona de estudio, se ha basado en la información registrada en la estación portátil. Los parámetros meteorológicos registrados fueron velocidad y dirección del viento, temperatura, presión atmosférica, humedad relativa y precipitación.

Cuadro N° 06: Equipos de Medición de Parámetros Meteorológicos

Descripción Técnica de la Estación Meteorológica					
Equipo	Marca / Modelo				
Estación Meteorológica	EM-OPE-21	llegible	DAVIS INSTRUMENTS/ VANTAGE PRO 2		
Estación Meteorológica	EM-OPE-1276	6250	DAVIS INSTRUMENTS / 6250		

Fuente: Elaboración Propia

Cuadro N° 07: Unidades y Rango de Operación de Sensores Meteorológicos

ochiores meteorologicos					
Variable	Unidades	Rango			
Velocidad de viento	Km/h	3 - 322			
Dirección de viento	grados	0 – 360			
Temperatura	°C	0 a 60			
Humedad Relativa	%	1 – 100			
Presión Atmosférica	mbar	540 – 1100			

Fuente: Elaboración Propia

7.1.3. MONITOREO DE CALIDAD DE RUIDO

- NTP ISO 1996-1/2007: Acústica Descripción y Mediciones de Ruido Ambiental, Parte I: Índices básicos y procedimientos de evaluación.
- ➤ NTP ISO 1996-2/2008: Acústica Descripción y Mediciones de Ruido Ambiental, Parte II: Determinación de los niveles de ruido ambiental.

Cuadro N° 08: Equipo de Medición de Niveles de Presión Sonora

Equipo	Código	Serie	Marca / Modelo
SONÓMETRO	EM-OPE-1270	1183	LARSON DAVIS /
SONOMETRO	EIVI-OPE-1270	1103	Lxt1

Fuente: Elaboración Propia

7.1.4. MONITOREO DE CALIDAD DE AGUA

Para el monitoreo de parámetros de campo se utilizó un Correntómetro y un Multiparámetro, cuyo funcionamiento consiste en la determinación de los parámetros de conductividad, oxígeno disuelto, temperatura y pH. Cuyos parámetros tienen los siguientes rango o capacidad: conductividad (0 a 3000 mS/cm), temperatura (0 a 50°C) y pH (-2 a 19.9), en tanto para el correntómetro nos permitió medir la velocidad de corriente en el río en m/s,

Cuadro N°04: Equipos de monitoreo

Equipo	Código	Serie	Marca / Modelo
MULTIPARÁMETRO	EM-OPE-856	210882564802	HACH / HQ40d
CORRENTÓMETRO	EM-OPE- 1275	48504	GLOBAL WATER / FP101

Fuente: Elaboración Propia

Cuadro N°05: Metodología de Análisis de Laboratorio				
Parámetro	Referencia del Método			
Parámetros de Campo				
Conductividad	SMEWW-APHA-AWWA-WEF Part 2510 B 23rd Ed. 2017			
pН	SMEWW-APHA-AWWA-WEF Part 4500-H+ B, 23 rd Ed. 2017			
Parámetros Fisicoquímico				
Cianuro Total	SMEWW-APHA-AWWA-WEF Part 4500-CN C, F, 23 rd Ed. 2017			
Aceites y Grasas	SMEWW-APHA-AWWA-WEF Part 5520 B, 23 rd Ed 201			
Aniones	EPA 300.0 Rev. 2.1, 1993, VALIDATED (Applied out of reach), 2019.			
Demanda Bioquímica de Oxígeno	SMEWW-APHA-AWWA-WEF Part 5210 B, 23 rd Ed. 2017			
Demanda Química de Oxígeno	SMEWW-APHA-AWWA-WEF Part 5220 D, 23 rd Ed. 2017			
Cromo Hexavalente	SMEWW-APHA-AWWA-WEF Part 3500-Cr-B, 23 rd Ed. 2017			
Sólidos suspendidos totales	SMEWW-APHA-AWWA-WEF Part 2540 D, 23 rd Ed. 2017			
Sulfuro	SMEWW-APHA-AWWA-WEF Part 4500-S2- D, 23 rd Ed. 2017			
Metales totales	Method 200.8, Revision 5.4 1994 (VALIDADO - Aplicado fuera del alcance), 2021			
Nitrato	SMEWW-APHA-AWWA-WEF Part 4500-NO3- E, 23 rd Ed. 2017			
Sulfato	SMEWW-APHA-AWWA-WEF Part 4500-SO42- E, 23 rd Ed. 2017			
Parámetros Microbiológico				
Coliformes Fecales	SMEWW-APHA AWWA-WEF.Part 9221 F1, 23 rd Ed.2017.			
Coliformes Totales	SMEWW 9221 B, 23 rd Ed. 2017			

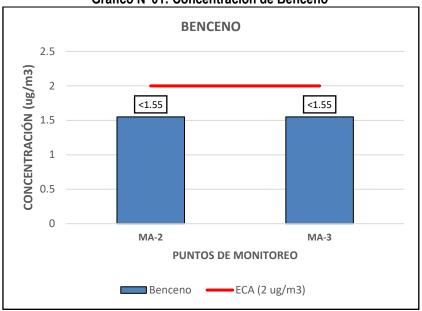
Fuente: Analytical Laboratory E.I.R.L.

RESULTADOS DEL MONITOREO 8.

En los siguientes cuadros se muestran los resultados del monitoreo para parámetros de calidad de aire, parámetros meteorológicos, ruido ambiental y calidad de agua.

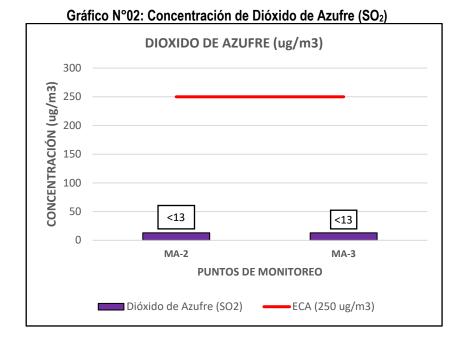
Cuadro N°09: Resultados de Calidad del Aire

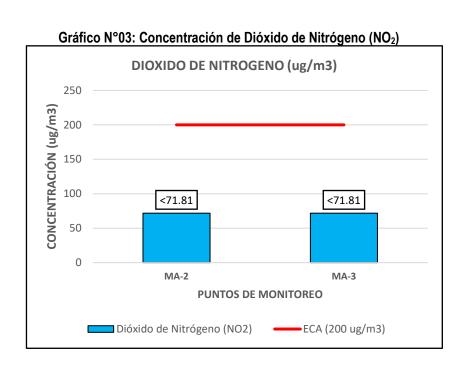
Punto de Mu	MA-2	MA-3			
HORA Y FECHA D	10-03-22 12:00	10-03-22 12:00			
PARÁMETROS UNIDADES AIRE (*)			RESULTADOS (**)		
Benceno	ug/m³	2	<1.55 <1.55		
Dióxido de azufre (SO ₂)	ug/m³	250	<13.0 <13.0		
Dióxido de Nitrógeno	ug/m³	200	<71.81 <71.81		
Material Particulado PM ₁₀	ug/m³	100	10.72 19.06		
Material particulado PM _{2.5}	ug/m³	50	7.84	14.51	
Monóxido de carbono (CO) ug/m³		10000	<1250	<1250	
Sulfuro de Hidrógeno	ug/m³	150	<7.00	<7.00	

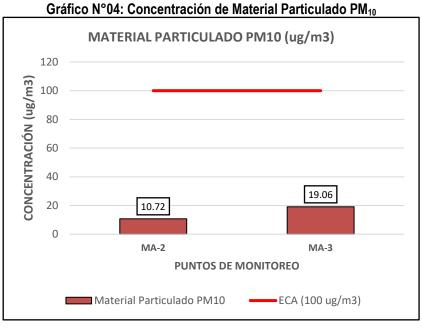

^{(&}lt;) Por debajo del límite de cuantificación del método de Laboratorio.

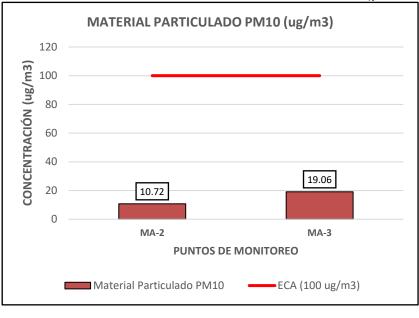
Cuadro N°10: Resultados Promedios de Parámetros Meteorológicos

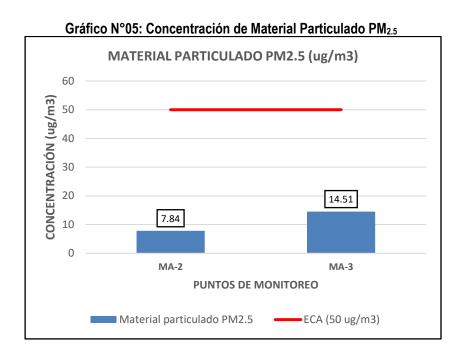
		g
Punto de monitoreo	MA-2	MA-3
Temperatura(°C)	8.71	8.67
Humedad (%)	81.13	86.46
Velocidad del viento (m/s)	2.81	3.43
Dirección del Viento (puntos cardinales)	ENE	NNW
Presión (mmHg)	446.11	450.11

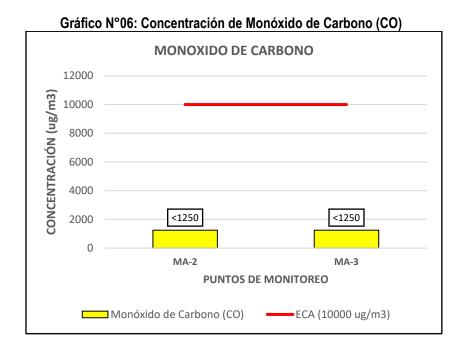

Fuente: IE-22-3502


Gráfico N°01: Concentración de Benceno




^(*) Valor referido al Reglamento De Estándares Nacionales De Calidad ambiental Del Aire


^(**) Fuente: IE-22-3502



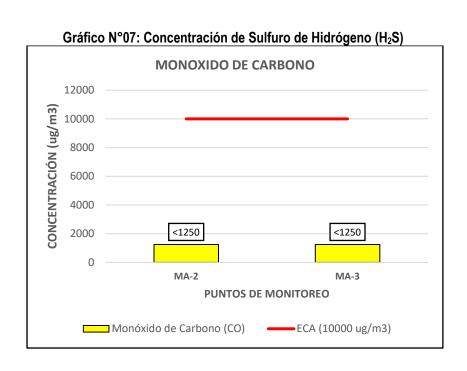


Gráfico N°08: Rosa de Viento MA-2

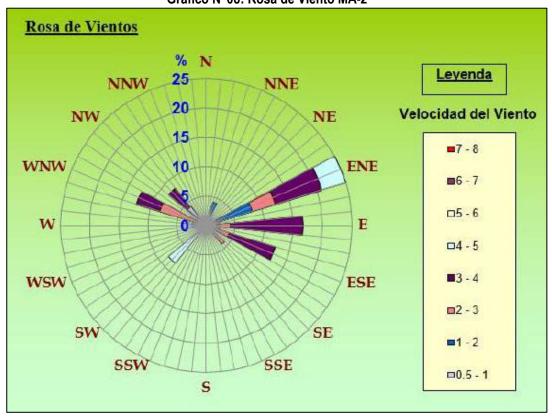
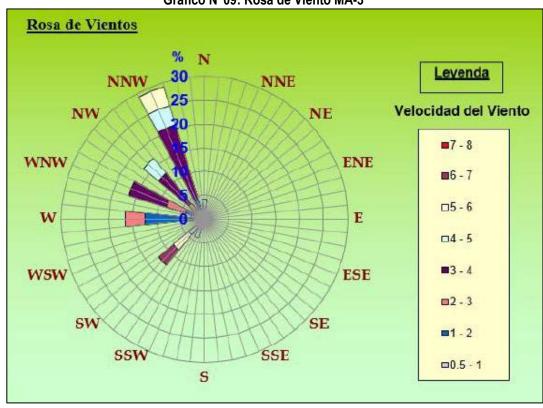



Gráfico N°09: Rosa de Viento MA-3

Cuadro N°11: Resultados de niveles de ruido ambiental en horario diurno

Punto de Muestreo	FECHA	HORA	NIVEL DE PRESIÓN SONORA			
	ILONA	HOIVA	Max	Min	LAEQT dB	
MA-1	10/03/2022	13:47	57.2	39.3	45.1	
MA-2	10/03/2022	12:50	63.5	40.1	35.0	
ESTÁNDAR DE COMPARACIÓN PARA RUIDO DIURNO – ZONA INDUSTRIAL:					80.0	

Valor referido a los Estándares de Calidad Ambiental de Ruido D.S. N°085–2003–PCM.

Diurno: El período diurno está comprendido desde las 7:01h hasta las 22:00h.

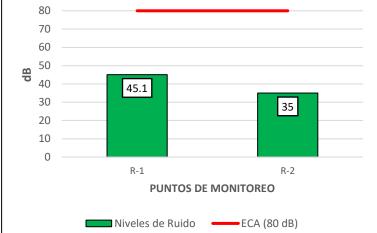
Fuente: IE-22-3541

Cuadro N°12: Resultados de niveles de ruido ambiental en horario nocturno

Punto de Muestreo	FECHA	HORA	NIVEL DE PRESIÓN SONORA			
FUNTO DE MOESTREO	ILONA	HORA	Max	Min	LAEQT dB	
MA-1	11/03/2022	05:14	45.1	40.9	41.6	
MA-2	11/03/2022	06:01	48.2	36.0	38.7	
ESTÁNDAR DE COMPARACIÓN PARA RUIDO NOCTURNO – ZONA INDUSTRIAL:					70.0	

Valor referido a los Estándares de Calidad Ambiental de Ruido D.S. N°085–2003–PCM. Nocturno: El período nocturno está comprendido desde las 22:01h hasta las 7:00h.

Fuente: IE-22-3541


Niveles de Ruido Ambiental (Ruido Diurno)

90

80

70

Gráfico N°10: Nivel de Ruido Ambiental - Diurno

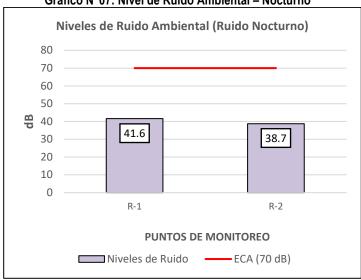


Gráfico N°07: Nivel de Ruido Ambiental - Nocturno

Cuadro N°13: Resultados del Monitoreo de Calidad del Agua comparado con la Categoría 4: Conservación de ambiente acuático D.S. N°004-2017-MINAM

F	MW-2					
Ног	RA Y FECHA DE MUE	STREO:	11/03/2022			
			08:30			
PARÁMETROS	UNIDADES	E1: LAGUNAS Y LAGOS	RESULTADOS*			
FISICOQUÍMICOS						
Aceites y Grasas	mg/L	5.0	<0.5			
Cromo hexavalente	mg/L	0.011	<0.20			
Demanda Bioquímica de Oxígeno	mg/L	5	<2.0			
Demanda Química de Oxígeno	mg/L	-	13.5			
Sólidos Suspendidos Totales	mg/L	≤25	<5.0			
Sólidos Totales Disueltos	mg/L		132			
Sulfuro	mg/L	0.002	<0.002			
Nitratos	mg/L	13	0.07			
Nitrito	mg/L		<0.05			
Sulfato	mg/L		30.9			
	METALES TO	TALES-INORGÁNICOS	<u> </u>			
Antimonio	mg/L	0.64	<0,002			
Arsénico	mg/L	0.15	<0,002			
Bario	mg/L	0.7	0,0052			
Cadmio Disuelto	mg/L	0.00025				
Cobre	mg/L	50	<0.10			
Cromo VI	mg/L	750	27.05			
Mercurio	mg/L	1.4	0.199			
Níquel	mg/L	6.6	<0.0003			
Plomo	mg/L	0.0025	<0.002			
Selenio	mg/L	0.005	<0.001			
Talio	mg/L	0.0008	<0.0003			
Zinc	mg/L	0.12	<0.0001			

MICROBIOLÓGICO				
Coliformes Totales	NMP/100mL	-	4.0	
Coliformes Fecales	NMP/100mL			
(Termotolerantes)		1000	2.0	

^{*}Fuente: IE-22-3682

Cuadro N°14: Cuadro Comparativo de los Resultados de Calidad de Agua Superficial según D.S. N°004-2017-MINAM

		CATEGORÍA 3			MW-5	MW-6	MW-7
	UNIDAD DE	D1: RIEGO DE	VEGETALES	D2: BEBIDA	11-03-2022	11-03-2022	11-03-2022
PARÁMETROS	MEDIDA	AGUA PARA	AGUA PARA	DE DE	09:45	12:13	13:14
	MEDIDA	RIEGO NO RESTRINGIDO (C)	RIEGO RESTRINGIDO	ANIMALES	R	RESULTADOS	5 *
Aceites y grasas	mg/L	5		10	< 0.50	< 0.50	< 0.50
Caudal	m³/s	-			0.345	0.638	0.539
Conductividad	μS/cm	2 50	0	5 000	270.0	241.0	223.0
Cromo VI	mg/L	-			<0.010	<0.010	<0.010
Demanda Bioquímica de Oxígeno	mg/L	15		15	<2.0	<2.0	<2.0
Demanda Química de Oxígeno	mg/L	40		40	15.0	11.4	13.0
Oxígeno Disuelto	mg/L	≥4		≥5	5.42	6.04	6.90
pН	pН	6.5 –	8.5	6.5 – 8.4	8.24n	8.56	8.50
Sólidos Suspendidos Totales	mg/L	1			14.3	5.7	<5.0
Sulfuro	mg/L	-			<0.002	<0.002	<0.002
Sulfatos	mg/L	1 000		1 000	23.5	18.7	18.0
Nitrato	mg/L	100		100	0.2	0.17	0.16
Nitrito	mg/L	10		10	< 0.05	< 0.05	< 0.05
		MET	ALES TOTALES				
Aluminio	mg/L	5		5	0.413	<0.005	<0.005
Arsénico	mg/L	0.1		0.2	<0.002	<0.002	<0.002
Bario	mg/L	0.7		**	0.0072	0.0382	0.0385
Berilio	mg/L	0.1		0.1	<0.0003	<0.0003	< 0.0003
Boro	mg/L	1		5	<0.015	0.023	0.023
Cadmio	mg/L	0.0	1	0.05	< 0.0001	<0.0001	< 0.0001
Cobalto	mg/L	0.0	5	1	<0.0020	<0.0020	<0.0020
Cobre	mg/L	0.2		0.5	< 0.0003	<0.0003	< 0.0003
Cromo	mg/L	0.0	1	1	<0.0002	<0.0002	<0.0002
Hierro	mg/L	5		**	0.556	0.177	0.131
Litio	mg/L	2.5	5	2.5	< 0.0003	<0.0003	< 0.0003
Magnesio	mg/L	**		250	2.519	6.415	5.839
Manganeso	mg/L	0.2		0.2	0.0139	<0.0001	<0.0001
Mercurio	mg/L	0.00)1	0.01	<0.0001	<0.0001	<0.0001
Níquel	mg/L	0.2		1	<0.0003	<0.0003	<0.0003
Plomo	mg/L	0.05		0.05	<0.002	<0.002	<0.002
Selenio	mg/L	0.02		0.05	<0.001	<0.001	<0.001
Zinc	mg/L	2		24	<0.0001	0.0362	<0.0001
		MICF	ROBIOLÓGICO				
Coliformes Fecales (Termotolerantes)	NMP/100mL	1000	2000	1000	240.0	49.0	33.0
Coliformes Totales	NMP/100mL				240.0	460.0	49.0

^{*}Fuente: IE-22-3632

^{(&}lt;) Por debajo del límite de detección del método de laboratorio.

Los valores resaltados en negrita superan el valor de la normativa --, Significa que los valores no están representados en la normativa.

^{(&}lt;) Por debajo del límite de detección del método de laboratorio.

Los valores resaltados en negrita superan el valor de la normativa

^{--,} Significa que los valores no están representados en la normativa.

9. CONCLUSIONES

CALIDAD DE AIRE

 El resultado de todos los parámetros del monitoreo para Calidad de Aire, se encuentran por debajo del valor estándar establecido en el Decreto Supremo N°003-2017-MINAM.

RUIDO AMBIENTAL

- El resultado de nivel de ruido ambiental en el horario diurno para R-1 y R-2 fueron de 45.1 dB y 35.0 dB, respectivamente, por lo tanto, se encuentran por debajo de los estándares nacionales de calidad ambiental para ruido 80.0 dB (Zona Industrial) establecido en el D.S. N°085-2003-PCM.
- El resultado de nivel de ruido ambiental en el horario nocturno para R-1 y R-2 fueron de 41.6 dB y 38.7 dB, respectivamente, por lo tanto, se encuentran por debajo de los estándares nacionales de calidad ambiental para ruido 70.0 dB (Zona Industrial) establecido en el D.S. N°085-2003-PCM.

CALIDAD DE AGUA

- Los resultados de todos los parámetros en el cuadro 13 del monitoreo para Calidad de Agua, se encuentran por debajo del valor estándar de la Categoría 4: Conservación del ambiente acuático E1: Lagunas y lagos establecido en el D.S N°011-2017-MINAM.
- Los resultados de todos los parámetros en el cuadro 14 del monitoreo para Calidad de Agua, se encuentran por debajo del valor estándar de la Categoría 3: Riego de vegetales y bebida de animales establecido en el D.S Nº011-2017-MINAM. A comparación del valor pH en el punto de muestreo MW-6 que supera la normativa establecida.

ANEXOS

ANEXO I: INFORMES DE ENSAYO DE LABORATORIO

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL : ARIANA OPERACIONES MINERAS S.A.C.

2.-DIRECCIÓN : AV. MANUEL OLGUÍN NRO. 501 INT. 803 URB. HARAS TIBER LIMA - LIMA - SANTIAGO DE SURCO

3.-PROYECTO : PROYECTO ARIANA

4.-PROCEDENCIA : Monitoreo Ambiental Participativo del Proyecto Minero Ariana - Marcapomacocha // YAULI - JUNIN
 5.-SOLICITANTE : COMITÉ DE MONITOREO Y VIGILANCIA AMBIENTAL PARTICIPATIVO (CMVAP-ARIANA)

6.-ORDEN DE SERVICIO N° : 0000000990-2022-0001 7.-PROCEDIMIENTO DE MUESTREO : P-OPE-1 MUESTREO

8.-MUESTREADO POR : ANALYTICAL LABORATORY E.I.R.L.

9.-FECHA DE EMISIÓN DE INFORME: 2022-03-28

II. DATOS DE ÍTEMS DE ENSAYO

1.-PRODUCTO : Aire 2.-NÚMERO DE MUESTRAS : 2

3.-FECHA DE RECEP. DE MUESTRA : 2022-03-12

4.-PERÍODO DE ENSAYO : 2022-03-12 al 2022-03-28

Liz Y. Quispe Quispe Jefe de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sólo estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

LABORATORIO DE ENSAYO
ACREDITADO POR EL
ORGANISMO DE
ACREDITACION INACAL-DA
CON REGISTRO Nº LE - 096

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO
Benceno (C6H6) ²	NTP 712.107:2020	Environmental Quality Monitoring. Benzene concentration
		measurement method in ambient air. Part 2: Aspiration sampling
		followed by solvent desorption and gas chromatography.
Dióxido de Azufre (*)	EPA CFR 40. Appendix A-2 to part 50. 2019.	Reference method for the determination of sulfur dioxide in the
		atmosphere. (Pararosaniline method).
Dióxido de Nitrógeno (*)	ASTM D1607-91 - 2011	Standard Test Method for Nitrogen Dioxide Content of the
		Atmosphere (Griess-Saltzman Reaction)
Material particulado PM 10 Alto volumen (*)	EPA-Compendium Method IO - 2.1-1999	Sampling of Ambient Air for Total Suspended Particulate Matter
		(SMP) and PM10 Using High Volume (HV) Sampler.
Material particulado PM 2.5 Alto volumen (*)	EPA CFR 40. Appendix J to part 50, 7-1-11 Edition	Reference method for the determination of particulate matter as
	Validado (aplicado fuera del alcance).	PM10 in the atmosphere
Mediciones Metereologicas ^{2 (c)}	ASTM D 5741-96(2017)	Standar Practice for Characterizing Surface Wind Using a Wind Vane
		and Rotating Anenometer
Monóxido de Carbono (*)	Peter O. Warner (Validado-Modificado) 2018	Determinación de Monóxido de Carbono en la atmósfera.Método
		4:Carboxibenceno sulfonamida.
Sulfuro de Hidrógeno (*)	COVENIN 3571 : 2000. (Validado-Modificado). 2015	Determinación de la concentración de sulfuro de hidrógeno (H2S) en
		la atmósfera

[&]quot;ASTM": American Society for Testing Materials

[&]quot;EPA" : U. S. Environmental Protection Agency. Methods for Chemicals Analysis

[&]quot;NTP" : Norma Técnica Peruana

^(*) Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

² Ensayo acreditado por el IAS

^c Ensayo realizado en campo (medido in situ)

LABORATORIO DE ENSAYO
ACREDITADO POR EL
ORGANISMO DE
ACREDITACION INACAL-DA
CON REGISTRO № LE - 096

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

IV. RESULTADOS

	ITEM			1	2
	CÓD	IGO DE LAB	ORATORIO:	M-22-10840	M-22-10841
		CÓDIGO DE	L CLIENTE:	MA-2	MA-3
		COOF	RDENADAS:	E:0356176	E:0357899
UTM WGS 84:				N:8726137	N:8729319
		Р	RODUCTO:	A	IRE
	INSTRU	JCTIVO DE M	(UESTREO:	I-OPE-1.2 MU	ESTREO - AIRE
	INICIO DE MUES	TDEO (EEC)	IA LIODA).	10-03-2022	10-03-2022
INICIO DE MUESTREO (FECHA y HORA):				12:00	12:00
FINIDE MUTETTER (FEOLIA : LIODA).			IA LIODA).	11-03-2022	11-03-2022
FIN DE MUESTREO (FECHA y HORA):				12:00	12:00
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS
Benceno (C6H6) ²	μg/m3	0,7630	1,5500	<1,5500	<1,5500
Dióxido de Azufre (*)	μg/m3	5,20	13,00	<13,00	<13,00
Dióxido de Nitrógeno (*)	μg/m3	24,95	71,81	<71,81	<71,81
Material particulado PM 10 Alto	μg/m3	0,27	0,90	10,72	19.06
volumen (*)		0,27	0,90	10,72	19,06
Material particulado PM 2.5 Alto	μg/m3	0,27	0.90	7,84	14,51
volumen (*)		0,27	0,90	1,04	14,51
Monóxido de Carbono (*)	μg/m3	500,00	1 250,00	<1 250,00	<1 250,00
Sulfuro de Hidrógeno (*)	μg/m3	2,80	7,00	<7,00	<7,00

 $^{^{(&#}x27;)}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Límite de detección del método, "<"= Menor que el L.D.M.

"-": No ensayado NA: No Aplica

² Ensayo acreditado por el IAS

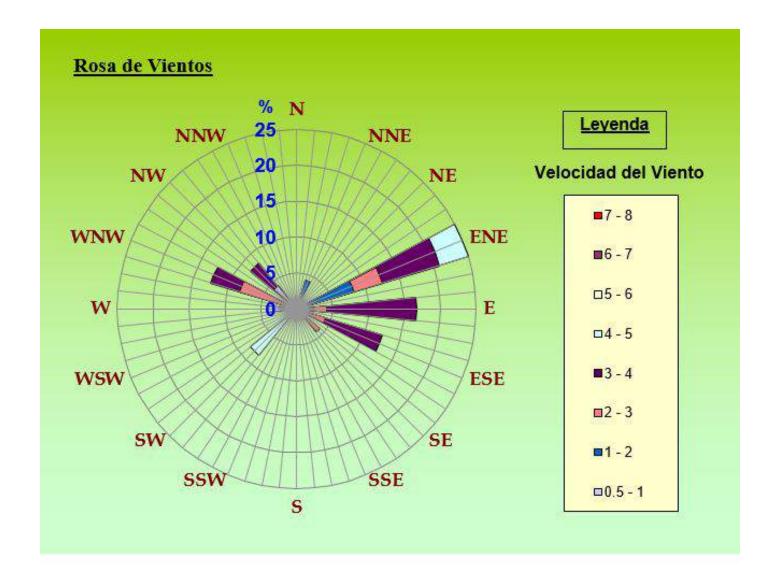
LABORATORIO DE ENSAYO
ACREDITADO POR EL
ORGANISMO DE
ACREDITACION INACAL-DA
CON REGISTRO Nº LE - 096

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

METEREOLOGICOS

	ESTACIÓN DE MUES	TREO	MA-2								
	COORDENADAS - UTM	WCC 04			0356176						
,	COORDENADAS - UTM	WG5 04			8726137						
Fecha	Hora de Registro	Temperatura (°C)	Humedad (%)		Dirección del Viento	Presión	Precipitación				
reciia	nora de Registro	remperatura (C)	Humeuau (%)	(m/s)	(puntos cardinales)	(mmHg)	Precipitación				
2022-03-10	12:00	12	57	3.00	ENE	447.00	-				
2022-03-10	13:00	15	53	3.50	ESE	448.00	-				
2022-03-10	14:00	15	47	3.10	ESE	446.00	-				
2022-03-10	15:00	15	52	2.50	SE	445.00	-				
2022-03-10	16:00	13	54	4.50	SW	445.20	-				
2022-03-10	17:00	13	53	4.40	SW	445.00	-				
2022-03-10	18:00	10	76	3.60	E	447.00	-				
2022-03-10	19:00	8	92	3.50	ENE	446.00	-				
2022-03-10	20:00	8	92	1.20	ENE 446.8		-				
2022-03-10	21:00	8	93	4.20	ENE	446.50	-				
2022-03-10	22:00	7	98	3.30	ENE	446.80	-				
2022-03-10	23:00	7	98	0.30	WNW 446.00		-				
2022-03-11	00:00	6	97	3.90	WNW 446.00		-				
2022-03-11	01:00	4	99	3.00	WNW	446.20	-				
2022-03-11	02:00	6	98	2.10 WNW		446.30	-				
2022-03-11	03:00	3	97	1.00	NW	446.50	-				
2022-03-11	04:00	6	95	1.50	NNE	445.00	-				
2022-03-11	05:00	4	98	2.00	ENE	444.00	-				
2022-03-11	06:00	5	100	3.20	NW	446.20	-				
2022-03-11	07:00	5	100	2.50	E	446.40	-				
2022-03-11	08:00	7	100	1.00	W 446.30		-				
2022-03-11	09:00	8	75	3.80	E 446.10		-				
2022-03-11	10:00	11	67	3.60	E	446.30	-				
2022-03-11	11:00	13	56	2.80	ESE	446.00	-				
Pı	omedio	8.71	81.13	2.81	ENE	446.11	0.00				



Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

GRAFICA DE ROSA DE VIENTOS

ESTACIÓN DE MUESTREO	MA-2
COORDENADAS - UTM WGS 84	0356176
	M-22-10840

DIRECCIÓN PREDOMINANTE DEL VIENTO				
ENE	25.00%			

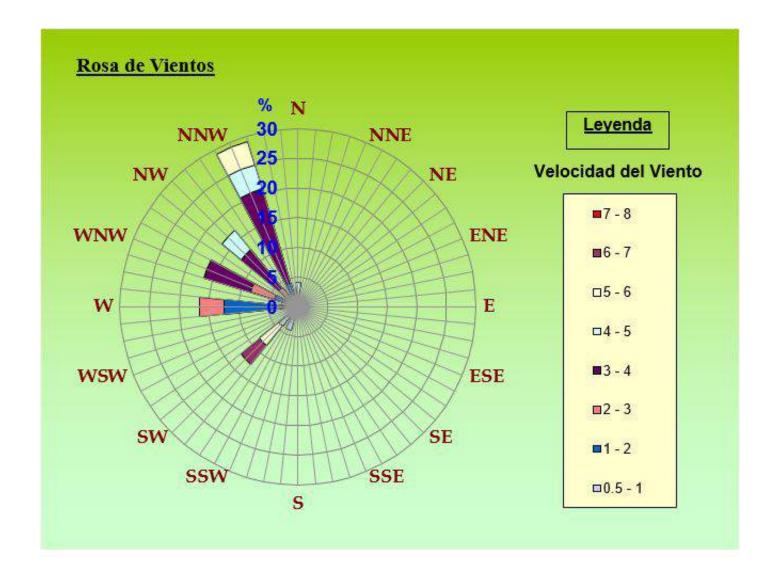
LABORATORIO DE ENSAYO
ACREDITADO POR EL
ORGANISMO DE
ACREDITACION INACAL-DA
CON REGISTRO Nº LE - 096

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

METEREOLOGICOS

	ESTACIÓN DE MUES	TREO	MA-3								
	COORDENADAS - UTM	WCC 04	0357899								
,	COORDENADAS - UTM	WG5 04			8729319						
Fecha	Hora de Registro	Temperatura (°C)	Humedad (%)	Velocidad del viento	Dirección del Viento	Presión	Precipitación				
reciia	nora de Registro	remperatura (C)	Humeuau (76)	(m/s)	(puntos cardinales)	(mmHg)	Frecipitacion				
2022-03-10	12:00	12	71	3.50	NW	450.70	-				
2022-03-10	13:00	14	67	4.00	NNW	449.00	-				
2022-03-10	14:00	15	67	3.60	NNW	450.00	-				
2022-03-10	15:00	15	69	3.10	NNW	449.80	-				
2022-03-10	16:00	13	74	6.40	SW	451.00	-				
2022-03-10	17:00	13	81	5.40	SW	450.00	-				
2022-03-10	18:00	10	91	4.30	SW	450.20	-				
2022-03-10	19:00	8	93	3.70	WNW	450.40	-				
2022-03-10	20:00	8	94	1.70	NNW	450.00	-				
2022-03-10	21:00	8	86	5.20	NNW	450.90	-				
2022-03-10	22:00	7	81	4.10	SSW	452.00	-				
2022-03-10	23:00	7	81	0.50	W	448.90	-				
2022-03-11	00:00	6	92	4.40	N	449.50	-				
2022-03-11	01:00	4	94	3.60	NNW	449.00	-				
2022-03-11	02:00	6	96	2.80 WNW		451.00	-				
2022-03-11	03:00	3	97	1.50	1.50 W		-				
2022-03-11	04:00	6	97	2.00	W	450.00	-				
2022-03-11	05:00	4	98	2.50	W	450.30	-				
2022-03-11	06:00	5	98	4.30	NW	450.10	-				
2022-03-11	07:00	5	98	3.10	WNW 450.40		-				
2022-03-11	08:00	7	94	1.20	WNW	450.00	-				
2022-03-11	09:00	8	87	4.50	NNW	449.00	-				
2022-03-11	10:00	11	84	3.80	NW	450.50	-				
2022-03-11	11:00	13	85	3.00	NW	450.00	-				
Pr	omedio	8.67	86.46	3.43	NNW	450.11	0.00				



Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3502

GRAFICA DE ROSA DE VIENTOS

ESTACIÓN DE MUESTREO	MA-3
COORDENADAS - UTM WGS 84	0357899
	M-22-10841

DIRECCIÓN PREDOMINANTE DEL VIENTO
NNW 29.17%

"FIN DE DOCUMENTO"

INFORME DE ENSAYO N°: IE-22-3541

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL : ARIANA OPERACIONES MINERAS S.A.C.

2.-DIRECCIÓN : AV. MANUEL OLGUÍN NRO. 501 INT. 803 URB. HARAS TIBER LIMA - LIMA - SANTIAGO DE SURCO

3.-PROYECTO : PROYECTO ARIANA

4.-PROCEDENCIA : ARIANA - MARCODOMACOCHA - YAOLY - JUNIN

5.-SOLICITANTE : COMITÉ DE MONITOREO Y VIGILANCIA AMBIENTAL PARTICIPATIVO (CMVAP-ARIANA)

6.-ORDEN DE SERVICIO N° : 0000000990-2022-0001 7.-PROCEDIMIENTO DE MUESTREO : P-OPE-1 MUESTREO

8.-MUESTREADO POR : ANALYTICAL LABORATORY E.I.R.L.

9.-FECHA DE EMISIÓN DE INFORME: 2022-03-28

II. DATOS DE ÍTEMS DE ENSAYO

1.-PRODUCTO : Ruido 2.-NÚMERO DE MUESTRAS : 2

3.-FECHA DE RECEP. DE MUESTRA : 2022-03-12

4.-PERÍODO DE ENSAYO : 2022-03-12 al 2022-03-28

Liz Y. Quispe Quispe Jefe de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sólo estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

INFORME DE ENSAYO N°: IE-22-3541

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO
Ruido Ambiental ^{2 (c)}	NTP-ISO 1996-1, 2007 / NTP-ISO 1996-2, 2008.	ACOUSTICS. Description. measurement and assessment of
		environmental noise. Part1: Basic quantities and assessment
		procedures / ACOUSTICS. Description, measurement and
		assessment of environmental noise. Part 2: Determination of
		environmental noise levels.

"ISO" : International Organization for Standardization

"NTP": Norma Técnica Peruana

² Ensayo acreditado por el IAS

^c Ensayo realizado en campo (medido in situ)

INFORME DE ENSAYO N°: IE-22-3541

IV. RESULTADOS

	ITEM				1 2					2	
	CÓDIGO DE LABORATORIO:				M-22-10931			M-22-10932			
	CÓDIGO DEL CLIENTE:				MA-2 MA-3				\-3		
	COORDENADAS:				E:0356176 E:0357899				7899		
	UTM WGS 84:				N:872	26137			N:872	29319	
	PRODUCTO:						RU	IDO			
	INSTRU	CTIVO DE M	IUESTREO:		I-OPE-1.13 MEDICIONES DE RUIDO AMBIENTAL						
	EECHA v	HORA DE M	HESTDEO :	DIURNO		NOCTURN	0	DIURNO		NOCTURNO	
	I LOTIA y	I IONA DE IVI	OLSTRLO.	10-03-2022	2	11-03-2022		10-03-2022		11-03-2022	
				13:47		05:14		12:50		06:01	
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESULTADOS							
Ruido Ambiental ²				MAX	57.2	MAX	45.1	MAX	63.5	MAX	48.2
	dB	NA	10,0	MIN	39.3	MIN	40.9	MIN	40.1	MIN	36.0
				EQUIVALENTE	45.1	EQUIVALENTE	41.6	EQUIVALENTE	35.0	EQUIVALENTE	38.7

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Límite de detección del método, "<"= Menor que el L.D.M.

"-": No ensayado NA: No Aplica

"FIN DE DOCUMENTO"

² Ensayo acreditado por el IAS

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3632

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL : ARIANA OPERACIONES MINERAS S.A.C.

2.-DIRECCIÓN : AV. MANUEL OLGUÍN NRO. 501 INT. 803 URB. HARAS TIBER LIMA - LIMA - SANTIAGO DE SURCO

3.-PROYECTO : PROYECTO ARIANA

4.-PROCEDENCIA : Monitoreo Ambiental Participativo del Proyecto Minero Ariana - Marcapomacocha // YAULI - JUNIN
 5.-SOLICITANTE : COMITÉ DE MONITOREO Y VIGILANCIA AMBIENTAL PARTICIPATIVO (CMVAP-ARIANA)

6.-ORDEN DE SERVICIO N° : 0000000990-2022-0001 7.-PROCEDIMIENTO DE MUESTREO : P-OPE-1 MUESTREO

8.-MUESTREADO POR : ANALYTICAL LABORATORY E.I.R.L.

9.-FECHA DE EMISIÓN DE INFORME: 2022-03-28

II. DATOS DE ÍTEMS DE ENSAYO

1.-PRODUCTO : Agua 2.-NÚMERO DE MUESTRAS : 3

3.-FECHA DE RECEP. DE MUESTRA : 2022-03-12

4.-PERÍODO DE ENSAYO : 2022-03-12 al 2022-03-28

Liz Y. Quispe Quispe Jefe de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sólo estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3632

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO
Aceites y Grasas (*)	SMEWW-APHA-AWWA-WEF Part 5520 B, 23 rd Ed	Oil and Grease. Liquid-Liquid, Partition-Gravimetric Method
	2017	
Aniones ²	EPA 300.0 Rev. 2.1, 1993, VALIDATED (Applied out of	Determination of inorganic anions by ion chromatography
	reach), 2019.	
Caudal ^{2 (c)}	UNE-EN ISO 748-2009	Measurement of liquid flow in open channels using current-meters or
		floats
Coliformes Fecales (Termotolerantes)	SMEWW-APHA AWWA-WEF.Part 9221 F1, 23 rd	Multiple-Tube Fermentation Technique for Members of the Coliform
(NMP) 2	Ed.2017.	Group. Escherichia coli Procedure Using Fluorogenic Substrate.
		Escherichia coli test (EC-MUG Medium).
Coliformes Totales (NMP) ²	SMEWW 9221 B, 23 rd Ed. 2017	Multiple-Tube Fermentation Technique for Members of the Coliform
		Group. Standard Total Coliform Fermentation Technique.
Conductividad (*) (c)	SMEWW-APHA-AWWA-WEF Part 2510 B 23rd Ed. 2017	Conductivity. Laboratory Method.
Cromo Hexavalente (*)	SMEWW-APHA-AWWA-WEF Part 3500-Cr-B, 23 rd Ed.	Chromium. Colorimetric Method
	2017	
Demanda Bioquímica de Oxígeno (*)	SMEWW-APHA-AWWA-WEF Part 5210 B, 23 rd Ed.	Biochemical Oxygen Demand (BOD). 5-Day BOD Test
	2017	

[&]quot;EPA" : U. S. Environmental Protection Agency. Methods for Chemicals Analysis

[&]quot;SMEWW": Standard Methods for the Examination of Water and Wastewater

[&]quot;ISO": International Organization for Standardization

 $^{^{(&#}x27;)}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

² Ensayo acreditado por el IAS

⁽c) Ensayo realizado en campo (medido in situ)

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3632

TIPO DE ENSAYO	NORMAL REFERENCIA	TÍTULO
Demanda Química de Oxígeno (*)	SMEWW-APHA-AWWA-WEF Part 5220 D, 23 rd Ed.	Chemical Oxygen Demand, Closed Reflux, Colorimetric Method
	2017	
Metales Totales ICPOES 2	EPA Method 200.7 Rev. 4.4, 1994 / EPA Method 200.7	Determination of Metals and Trace Elements in Water and Wastes by
	Rev. 4.4, 2021 (Validado: Bi, U, S)	Inductively Coupled Plasma-Atomic Emission Spectrometry
Oxígeno Disuelto (*) (c)	SMEWW-APHA-AWWA-WEF Part 4500-O G. 23rd Ed.	Oxygen (Dissolved). Membrana Electrode Method
	2017	
pH ^(*) ^(c)	SMEWW-APHA-AWWA-WEF Part 4500-H+ B, 23 rd Ed.	pH Value Electrometric Method
	2017	
Sólidos Suspendidos Totales (*)	SMEWW-APHA-AWWA-WEF Part 2540 D, 23 rd Ed.	Solids. Total Suspended Solids Dried at 103-105°C
	2017	
Sulfuro (*)	SMEWW-APHA-AWWA-WEF Part 4500-S2- D, 23 rd Ed.	Sulfide. Methylene Blue Method.
	2017	

[&]quot;EPA": U. S. Environmental Protection Agency. Methods for Chemicals Analysis

[&]quot;SMEWW": Standard Methods for the Examination of Water and Wastewater

 $^{^{(&}quot;)}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

² Ensayo acreditado por el IAS

^c Ensayo realizado en campo (medido in situ)

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3632

IV. RESULTADOS

INSTRUCTIVO DE MUESTREO I-OPE-1.4 MUESTREO DE AGUAS SUPERFICIALES		ITEM			1	2	3
COORDENADAS: E:0357817 E:0358102 E:0358137 E:0358107 E:0358137 E:0	CÓDIGO DE LABORATORIO:			M-22-11176	M-22-11177	M-22-11178	
UTM WGS 84: N:8728562 N:8729943 N:8730157	CÓDIGO DEL CLIENTE:				MW-5	MW-6	MW-7
PRODUCTO: Agua Natural Agua Na	COORDENADAS:				E:0357817	E:0358102	E:0358137
SUB PRODUCTO: Agua Superficial de Rio 13:14			U	ΓM WGS 84:	N:8728562	N:8729943	N:8730157
INSTRUCTIVO DE MUESTREO			P	RODUCTO:	Agua Natural	Agua Natural	Agua Natural
FECHA y HORA DE MUESTREO : 11-03-2022 11-03-2022 12:13 13:14			SUB P	RODUCTO:	Agua Superficial de Río	Agua Superficial de Río	Agua Superficial de Río
FECHA y HORA DE MUESTREO : 09:45 12:13 13:14	INSTRUCTIVO DE MUESTREO:				I-OPE-1.4	MUESTREO DE AGUAS SUPE	RFICIALES
ENSAYO UNIDAD L.D.M. L.C.M. RESULTADOS		FFOLIA	LIODA DE M	LIECTREO .	11-03-2022	11-03-2022	11-03-2022
Aceites y Grasas (*) mg/L 0.30 0.50 <0.50 <0.50 <0.50 <0.50		FECHA у	HORA DE M	UESTREU:	09:45	12:13	13:14
Caudal 2 m3/S NA NA 0,345 0,638 0,539 Coliformes Fecales (Termotolerantes) (NMP) 2 NMP/100mL NA 1,8 240,0 49,0 33,0 Coliformes Totales (NMP) 2 Conductividad (*) NMP/100mL NA 1,8 240,0 460,0 49,0 Conductividad (*) µS/cm NA 0,01 270,00 241,00 223,00 Crome Hexavalente (*) mg/L 0,004 0,010 <0,010	ENSAYO	UNIDAD	L.D.M.	L.C.M.		RESULTADOS	
Coliformes Fecales (Termotolerantes) (NMP) 2 NA 1,8 240,0 49,0 33,0	Aceites y Grasas (*)	mg/L	0,30	0,50	<0,50	<0,50	<0,50
Termotolerantes) (NMP) 2 NA 1,8 240,0 49,0 33,0	Caudal ²	m3/S	NA	NA	0,345	0,638	0,539
Conductividad (*) μS/cm NA 0,01 270,00 241,00 223,00 Cromo Hexavalente (*) mg/L 0,004 0,010 <0,010		NMP/100mL	NA	1,8	240,0	49,0	33,0
Cromo Hexavalente (*) mg/L 0,004 0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	Coliformes Totales (NMP) ²	NMP/100mL	NA	1,8	240,0	460,0	49,0
Demanda Bioquímica de Oxígeno (*)	Conductividad (*)	μS/cm	NA	0,01	270,00	241,00	223,00
Oxígeno (*) 0,4 2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	Cromo Hexavalente (*)	mg/L	0,004	0,010	<0,010	<0,010	<0,010
(*) 2,0 5,0 15,0 11,4 13,0 Oxígeno Disuelto (*) mg/L NA 0,10 5,42 6,04 6,90 pH (*) Unidad de pH NA 0,01 8,24 8,56 8,50 Sólidos Suspendidos Totales (*) mg/L 2,0 5,0 14,3 5,7 <5,0	·	mg/L	0,4	2,0	<2,0	<2,0	<2,0
pH (*) Unidad de pH NA 0,01 8,24 8,56 8,50 Sólidos Suspendidos Totales (*) mg/L 2,0 5,0 14,3 5,7 <5,0		mg/L	2,0	5,0	15,0	11,4	13,0
Sólidos Suspendidos Totales mg/L 2,0 5,0 14,3 5,7 <5,0 Sulfuro (*) (mg S2-/L) 0,001 0,002 <0,002	Oxígeno Disuelto (*)	mg/L	NA	0,10	5,42	6,04	6,90
(*) 2,0 5,0 14,3 5,7 <5,0	pH (*)	Unidad de pH	NA	0,01	8,24	8,56	8,50
Sulfuro (*) (mg S2-/L) 0,001 0,002 <0,002 <0,002 <0,002 Aniones Nitrato ² mg/L 0,02 0,05 0,20 0,17 0,16 Nitrito ² mg/L 0,02 0,05 <0,05	· .	mg/L	2,0	5,0	14,3	5,7	<5,0
Aniones mg/L 0,02 0,05 0,20 0,17 0,16 Nitrito ² mg/L 0,02 0,05 <0,05		(mg S2-/L)	0,001	0,002	<0,002	<0,002	<0.002
Nitrito 2 mg/L 0,02 0,05 <0,05 <0,05 <0,05 Sulfato 2 mg/L 0,2 0,5 23,5 18,7 18,0 Metales Totales ICPOES Aluminio 2 mg/L 0,005 0,020 0,413 <0,005					·	·	·
Sulfato 2 mg/L 0,2 0,5 23,5 18,7 18,0 Metales Totales ICPOES Aluminio 2 mg/L 0,005 0,020 0,413 <0,005 <0,005	Nitrato ²	mg/L	0,02	0,05	0,20	0,17	0,16
Metales Totales ICPOES ICPOES Aluminio 2 mg/L 0,005 0,020 0,413 <0,005	Nitrito ²	mg/L	0,02	0,05	<0,05	<0,05	<0,05
Aluminio ² mg/L 0,005 0,020 0,413 <0,005 <0,005	Sulfato ²	mg/L	0,2	0,5	23,5	18,7	18,0
	Metales Totales ICPOES	-					
	Aluminio ²	mg/L	0,005	0,020	0,413	<0,005	<0,005
Antimonio ² mg/L 0,002 0,006 <0,002 <0,002 <0,002 <0,002	Antimonio ²	mg/L	0,002	0,006	<0,002	<0,002	<0,002
Arsénico ² mg/L 0,002 0,008 <0,002 <0,002 <0,002	Arsénico ²	mg/L	0,002	0,008	<0,002	<0,002	<0,002
Bario ² mg/L 0,0002 0,0010 0,0072 0,0382 0,0385	Bario ²	mg/L	0,0002	0,0010	0,0072	0,0382	0,0385
Berilio ² mg/L 0,0003 0,0010 <0,0003 <0,0003 <0,0003	Berilio ²	mg/L	0,0003	0,0010	<0,0003	<0,0003	<0,0003

 $^{^{(^{\}circ})}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: L'imite de detección del método, "<"= Menor que el L.D.M.
"-": No ensayado

NA: No Aplica

² Ensayo acreditado por el IAS

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3632

	ITEM			1	2	3
	CÓD	IGO DE LAB	ORATORIO:	M-22-11176	M-22-11177	M-22-11178
		CÓDIGO DE	L CLIENTE:	MW-5	MW-6	MW-7
		COOF	RDENADAS:	E:0357817	E:0358102	E:0358137
		UT	M WGS 84:	N:8728562	N:8729943	N:8730157
	PRODUCTO:				Agua Natural	Agua Natural
	SUB PRODUCTO:				Agua Superficial de Río	Agua Superficial de Río
	INSTRI	JCTIVO DE M	(UESTREO:	I-OPE-1.4	MUESTREO DE AGUAS SUPE	RFICIALES
	FEOUR	· HODA DE S	ALIECTREC	11-03-2022	11-03-2022	11-03-2022
	FECHA	HORA DE M	IUESTREO:	09:45	12:13	13:14
ENSAYO	UNIDAD	L.D.M.	L.C.M.		RESULTADOS	
Bismuto ²	mg/L	0,009	0,030	<0,009	<0,009	<0,009
Boro ²	mg/L	0,002	0,008	0,015	0,023	0,023
Cadmio ²	mg/L	0,0001	0,0004	<0,0001	<0,0001	<0,0001
Calcio ²	mg/L	0,002	0,006	53,038	35,002	32,398
Cerio ²	mg/L	0,02	0,07	<0,02	<0,02	<0,02
Cobalto ²	mg/L	0,002	0,007	<0,002	<0,002	<0,002
Cobre ²	mg/L	0,0003	0,0010	<0,0003	<0,0003	<0,0003
Cromo ²	mg/L	0,0002	0,0008	<0,0002	<0,0002	<0,0002
Estaño 2	mg/L	0,001	0,003	<0,001	<0,001	<0,001
Estroncio ²	mg/L	0,00004	0,00010	0,29070	0,50690	0,49920
Fosforo ²	mg/L	0,01	0,04	<0,01	<0,01	<0,01
Hierro ²	mg/L	0,001	0,004	0,556	0,177	0,131
Litio ²	mg/L	0,0003	0,0009	<0,0003	<0,0003	<0,0003
Magnesio ²	mg/L	0,005	0,020	2,519	6,415	5,839
Manganeso ²	mg/L	0,0001	0,0002	0,0139	<0,0001	<0,0001
Mercurio ²	mg/L	0,0001	0,0002	<0,0001	<0,0001	<0,0001
Molibdeno ²	mg/L	0,0006	0,0020	<0,0006	<0,0006	<0,0006
Niquel ²	mg/L	0,0003	0,0010	<0,0003	<0,0003	<0,0003
Plata ²	mg/L	0,002	0,007	<0,002	<0,002	<0,002
Plomo ²	mg/L	0,002	0,006	<0,002	<0,002	<0,002
Potasio ²	mg/L	0,04	0,10	0,36	0,41	0,34
Selenio ²	mg/L	0,001	0,005	<0,001	<0,001	<0,001

² Ensayo acreditado por el IAS

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M.

L.D.M.: L'imite de detección del método, "<"= Menor que el L.D.M.
"-": No ensayado

NA: No Aplica

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3632

	ITEM			1	2	3
	CÓD	IGO DE LABO	ORATORIO:	M-22-11176	M-22-11177	M-22-11178
-		CÓDIGO DE	L CLIENTE:	MW-5	MW-6	MW-7
		COOF	RDENADAS:	E:0357817	E:0358102	E:0358137
		UT	M WGS 84:	N:8728562	N:8729943	N:8730157
		Р	RODUCTO:	Agua Natural	Agua Natural	Agua Natural
		SUB P	RODUCTO:	Agua Superficial de Río	Agua Superficial de Río	Agua Superficial de Río
	INSTRI	JCTIVO DE M	(UESTREO:	I-OPE-1.4	MUESTREO DE AGUAS SUPE	RFICIALES
	EECHA	, HODA DE M	MIESTREO.	11-03-2022	11-03-2022	11-03-2022
	FECHA y HORA DE MUESTREO:				12:13	13:14
ENSAYO	UNIDAD L.D.M. L.C.M.				RESULTADOS	
Sílice ²	mg/L	0,001	0,004	4,961	6,666	6,807
Sodio ²	mg/L	0,004	0,010	0,123	3,204	2,702
Talio ²	mg/L	0,0003	0,0010	<0,0003	<0,0003	<0,0003
Titanio ²	mg/L	0,0007	0,0020	<0,0007	<0,0007	<0,0007
Uranio ²	mg/L	0,005	0,020	<0,005	<0,005	<0,005
Vanadio ²	mg/L	0,0002	0,0007	<0,0002	<0,0002	<0,0002
Zinc ²	mg/L	0,0001	0,0004	<0,0001	0,0362	<0,0001

² Ensayo acreditado por el IAS

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Límite de detección del método, "<"= Menor que el L.D.M.

"-": No ensayado NA: No Aplica

"FIN DE DOCUMENTO"

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3682

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL : ARIANA OPERACIONES MINERAS S.A.C.

2.-DIRECCIÓN : AV. MANUEL OLGUÍN NRO. 501 INT. 803 URB. HARAS TIBER LIMA - LIMA - SANTIAGO DE SURCO

3.-PROYECTO : PROYECTO ARIANA

4.-PROCEDENCIA : ARIANA-MARCA POMA COCHA YAULI-JUNIN

5.-SOLICITANTE : COMITÉ DE MONITOREO Y VIGILANCIA AMBIENTAL PARTICIPATIVO (CMVAP-ARIANA)

6.-ORDEN DE SERVICIO N° : 0000000990-2022-0001 7.-PROCEDIMIENTO DE MUESTREO : P-OPE-1 MUESTREO

8.-MUESTREADO POR : ANALYTICAL LABORATORY E.I.R.L.

9.-FECHA DE EMISIÓN DE INFORME: 2022-03-23

II. DATOS DE ÍTEMS DE ENSAYO

1.-PRODUCTO : Agua 2.-NÚMERO DE MUESTRAS : 1

3.-FECHA DE RECEP. DE MUESTRA : 2022-03-12

4.-PERÍODO DE ENSAYO : 2022-03-12 al 2022-03-23

Liz Y. Quispe Quispe Jefe de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sólo estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3682

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO
Aceites y Grasas (*)	SMEWW-APHA-AWWA-WEF Part 5520 B, 23 rd Ed	Oil and Grease. Liquid-Liquid, Partition-Gravimetric Method
	2017	
Aniones ²	EPA 300.0 Rev. 2.1, 1993, VALIDATED (Applied out of	Determination of inorganic anions by ion chromatography
	reach), 2019.	
Coliformes Fecales (Termotolerantes)	SMEWW-APHA AWWA-WEF.Part 9221 F1, 23 rd	Multiple-Tube Fermentation Technique for Members of the Coliform
(NMP) 2	Ed.2017.	Group. Escherichia coli Procedure Using Fluorogenic Substrate.
		Escherichia coli test (EC-MUG Medium).
Coliformes Totales (NMP) ²	SMEWW 9221 B, 23 rd Ed. 2017	Multiple-Tube Fermentation Technique for Members of the Coliform
		Group. Standard Total Coliform Fermentation Technique.
Cromo Hexavalente (*)	SMEWW-APHA-AWWA-WEF Part 3500-Cr-B, 23 rd Ed.	Chromium. Colorimetric Method
	2017	
Demanda Bioquímica de Oxígeno (*)	SMEWW-APHA-AWWA-WEF Part 5210 B, 23 rd Ed.	Biochemical Oxygen Demand (BOD). 5-Day BOD Test
	2017	
Demanda Química de Oxígeno (*)	SMEWW-APHA-AWWA-WEF Part 5220 D, 23 rd Ed.	Chemical Oxygen Demand, Closed Reflux, Colorimetric Method
	2017	
Metales Totales ICPOES 2	EPA Method 200.7 Rev. 4.4, 1994 / EPA Method 200.7	Determination of Metals and Trace Elements in Water and Wastes by
	Rev. 4.4, 2021 (Validado: Bi, U, S)	Inductively Coupled Plasma-Atomic Emission Spectrometry

[&]quot;EPA" : U. S. Environmental Protection Agency. Methods for Chemicals Analysis

[&]quot;SMEWW": Standard Methods for the Examination of Water and Wastewater

 $^{^{(^{\}circ})}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

² Ensayo acreditado por el IAS

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3682

TIPO DE ENSAYO	NORMAL REFERENCIA	TÍTULO
Sólidos Suspendidos Totales (*)	SMEWW-APHA-AWWA-WEF Part 2540 D, 23 rd Ed.	Solids. Total Suspended Solids Dried at 103-105°C
	2017	
Sólidos Totales Disueltos (*)	SMEWW-APHA-AWWA-WEF Part 2540 C, 23 rd Ed.	Solids. Total Dissolved Solids Dried at 180°C
	2017	
Sulfuro (*)	SMEWW-APHA-AWWA-WEF Part 4500-S2- D, 23 rd Ed.	Sulfide. Methylene Blue Method.
	2017	

[&]quot;SMEWW": Standard Methods for the Examination of Water and Wastewater

 $^{^{(^{\}circ})}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

² Ensayo acreditado por el IAS

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3682

IV. RESULTADOS

ITEN				1
	CÓDIGO DE LABORATORIO:			M-22-11310
		CÓDIGO DE		
			DENADAS:	MW-2 E:0356449
-			M WGS 84:	N:8729399
			RODUCTO:	Agua Natural
			RODUCTO:	Agua Superficial (Laguna)
	INSTRU	CTIVO DE M		I-OPE-1.4 MUESTREO DE AGUAS SUPERFICIALES
				11-03-2022
	FECHA y	HORA DE M	UESTREO :	08:30
ENSAYO UI	NIDAD	L.D.M.	L.C.M.	RESULTADOS
Aceites y Grasas (*)	mg/L	0,30	0,50	<0,50
Coliformes Fecales NMI	P/100mL	NA	1,8	2,0
(Termotolerantes) (NMP) ²		I NA	1,0	2,0
Coliformes Totales (NMP) ² NMF	P/100mL	NA	1,8	4,0
Cromo Hexavalente (*)	mg/L	0,004	0,010	<0,010
Demanda Bioquímica de	mg/L	0,4	2,0	<2.0
Oxígeno (*)		0,4	2,0	72,0
Demanda Química de Oxígeno	mg/L	2,0	5,0	13,5
(*)		2,0	5,0	10,0
·	mg/L	2,0	5,0	<5,0
(*)		_,0		10,0
Sólidos Totales Disueltos (*)	mg/L	2	5	132
Sulfuro (*) (mo	g S2-/L)	0,001	0,002	<0,002
Aniones				
Nitrato ²	mg/L	0,02	0,05	0,07
Nitrito ²	mg/L	0,02	0,05	<0,05
Sulfato ²	mg/L	0,2	0,5	30,9
Metales Totales ICPOES				
Aluminio ²	mg/L	0,005	0,020	<0,005
Antimonio ²	mg/L	0,002	0,006	<0,002
Arsénico ²	mg/L	0,002	0,008	<0,002
Bario ²	mg/L	0,0002	0,0010	0,0052
Berilio ²	mg/L	0,0003	0,0010	<0,0003
Bismuto ²	mg/L	0,009	0,030	<0,009
Boro ²	mg/L	0,002	0,008	0,008

 $^{^{(^{\}circ})}$ Los resultados obtenidos corresponde a métodos que han sido acreditados por el INACAL - DA

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M.

"-": No ensayad NA: No Aplica

² Ensayo acreditado por el IAS

L.D.M.: Límite de detección del método, "<"= Menor que el L.D.M. "-": No ensayado

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3682

	ITEM			1
CÓDIGO DE LABORATORIO:			ORATORIO:	M-22-11310
		CÓDIGO DE	L CLIENTE:	MW-2
		COOF	RDENADAS:	E:0356449
		UT	ΓM WGS 84:	N:8729399
		Р	RODUCTO:	Agua Natural
		SUB P	RODUCTO:	Agua Superficial (Laguna)
	INSTR	UCTIVO DE N	(UESTREO:	I-OPE-1.4 MUESTREO DE AGUAS SUPERFICIALES
	FEOLIA		ALIECTREO.	11-03-2022
	FECHA	y HORA DE N	IUESTREU:	08:30
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESULTADOS
Cadmio ²	mg/L	0,0001	0,0004	<0,0001
Calcio ²	mg/L	0,002	0,006	27,122
Cerio ²	mg/L	0,02	0,07	<0,02
Cobalto ²	mg/L	0,002	0,007	<0,002
Cobre ²	mg/L	0,0003	0,0010	<0,0003
Cromo ²	mg/L	0,0002	0,0008	<0,0002
Estaño 2	mg/L	0,001	0,003	<0,001
Estroncio ²	mg/L	0,00004	0,00010	0,27610
Fosforo ²	mg/L	0,01	0,04	<0,01
Hierro ²	mg/L	0,001	0,004	<0,001
Litio ²	mg/L	0,0003	0,0009	<0,0003
Magnesio ²	mg/L	0,005	0,020	2,412
Manganeso ²	mg/L	0,0001	0,0002	<0,0001
Mercurio ²	mg/L	0,0001	0,0002	<0,0001
Molibdeno ²	mg/L	0,0006	0,0020	<0,0006
Niquel ²	mg/L	0,0003	0,0010	<0,0003
Plata ²	mg/L	0,002	0,007	<0,002
Plomo ²	mg/L	0,002	0,006	<0,002
Potasio ²	mg/L	0,04	0,10	0,30
Selenio ²	mg/L	0,001	0,005	<0,001
Sílice ²	mg/L	0,001	0,004	5,854
Sodio ²	mg/L	0,004	0,010	1,034

² Ensayo acreditado por el IAS

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Límite de detección del método, "<"= Menor que el L.D.M. "-": No ensayado

NA: No Aplica

Registro N° LE - 096

INFORME DE ENSAYO N°: IE-22-3682

	ITEM			1
	CÓDI	GO DE LABO	ORATORIO:	M-22-11310
		CÓDIGO DE	L CLIENTE:	MW-2
		COOR	DENADAS:	E:0356449
		UT	M WGS 84:	N:8729399
		Р	RODUCTO:	Agua Natural
	SUB PRODUCTO:			Agua Superficial (Laguna)
	INSTRU	CTIVO DE N	IUESTREO:	I-OPE-1.4 MUESTREO DE AGUAS SUPERFICIALES
	FEOLIA LIODA DE MUECTREO.			11-03-2022
	FECHA y HORA DE MUESTREO:			08:30
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESULTADOS
Talio ²	mg/L	0,0003	0,0010	<0,0003
Titanio ²	mg/L	0,0007	0,0020	<0,0007
Uranio ²	mg/L	0,005	0,020	<0,005
Vanadio ²	mg/L	0,0002	0,0007	<0,0002
Zinc ²	mg/L	0,0001	0,0004	<0,0001

² Ensayo acreditado por el IAS

L.C.M.: Límite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Límite de detección del método, "<"= Menor que el L.D.M.

"-": No ensayado NA: No Aplica

"FIN DE DOCUMENTO"

ANEXO II : REPORTE FOTOGRÁFICO

REGISTRO FOTOGRÁFICO DE CALIDAD DE AIRE

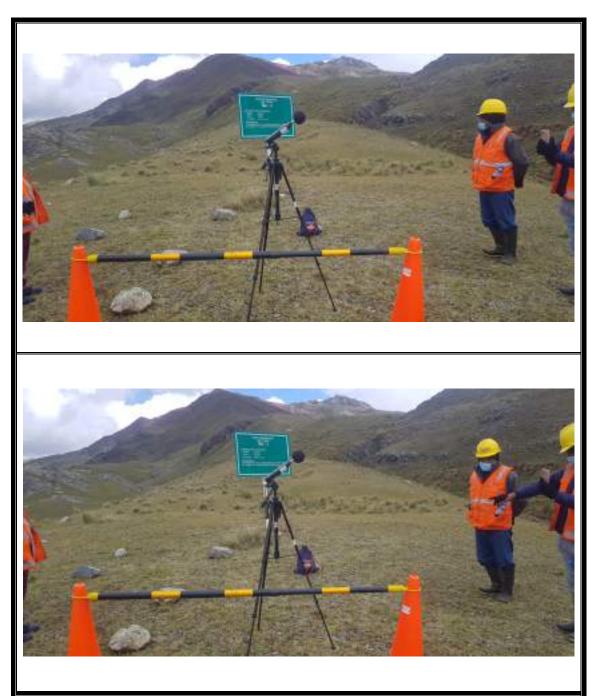
CALIDAD DE AIRE

PUNTO DE MUESTREO	MA-2
COORDENADAS	N:8726137 E:0356176

PUNTO DE MUESTREO	MA-3
COORDENADAS	N:8729319 E:0357899

REGISTRO FOTOGRÁFICO DE CALIDAD DE RUIDO DIURNO Y NOCTURNO

CALIDAD DE RUIDO



PUNTO DE MUESTREO	MA-2
COORDENADAS	N:8726137 E:0356176

PUNTO DE MUESTREO	MA-3
COORDENADAS	N:8729319 E:0357899

PUNTO DE MUESTREO	MA-3
COORDENADAS	N:8729319 E:0357899

REGISTRO FOTOGRÁFICO DE CALIDAD DE AGUA

PUNTO DE MUESTREO	MW-2
COORDENADAS	N:8729399 E:0356449

PUNTO DE MUESTREO	MW-5
COORDENADAS	N:8728562 E:0357817

PUNTO DE MUESTREO	MW-6
COORDENADAS	N:8729943 E:0358102

PUNTO DE MUESTREO	MW-7
COORDENADAS	N:8730157 E:0358137

ANEXO III : CADENAS DE CUSTODIA

	OAL	AB						CADE	NA DE	cus	TÖDL	- M	ATR	Z AI	RE												e R		60% 14.1 40 18.67.511			
Fia Pa	non del claren con Sacial: CON rsona de cintaren Parren del proyecto	LU15 1	lowiture Cosapi Yecto	0	Licins	HBIENT Telefono	Ka I	etici pp 14 Jaro	nvo (CH VA Mus L	P- AR	1AN	9) 380	922	3	Cac nic	en de ena di mne di bada n	e custo e ensa	odia:	1	250	2	75			. Qe U	on Isreo Pag.	10	2-	- / -		oli -
tern	Public de myselfree / Estación	Código de Inhorasorio	lateo	Final	Coordena	etas VIM		liciotus centales	à.	(pelg. H	;O+	2	2 2	2								2	1000	-	on manddless	Heriologies Heriologies	-	0	Mervane	nacy	3	howing
-		M.72			€	N	1.0	Pleadig	PTS	PM10	PW25	VAUL LINE	Pal 2.5 HT	PM 2519	g z	8	ā	¥ 9	MAN I	토	MAN.	Bercario	Wohas.	erraderra.	Janes	Med						
•	HA - 2	10840	Fecha: / 0 03 -2 1 Hore: / 2 - 0 d	Fecha: //. 03.23 rlore: // 5	3561 ⁷⁶	872613A	-9	446	-	160	15,18,1		A 40 A	1	1	1		√.		-		1		-	-	1-	A B	a rlov	lento es de l depés	pro)	S Sect Sect	oal.
2	4A-3	10841	12:00	Hora:	35789A	8724 ^{3M}	9	450		14.8 15.0	* 15,1 * 15,2	P#5 -	No. 77	-	/ v	1	-	1	-[-	-	-	1		-	-	/	A SI	proy.	ento e	elas Zos tod	Ope KH	a L Laves
ŋ	BC	10942	Fecha: 10-03, 2 Hora: 1-50	/0.03.71 Hora:	c35 6126	0.326137	_		-			2 . 141	- -		11	1	-	√.		-	-	1	-	-	-	-						
4				ton.										П																		
9			***	Decer Non-								П	T	П	T	T		1	T		T	T	T	T		T						
6		- (1		inte								П	T	П	T	T		T	T		T	Ť	Ť			Ť	T				\neg	
r			Serve Serve	larks Ave								H	T	Ħ	1	T	П	Ť	Ť	H	T	1	T			\dagger	\dagger				\neg	
8				lab.								H	T	Ħ	†	T		1	T			+	T			1	1					
1679	os perámetros que involuo	on Street signifier el ric	levers do tipo y pur		WARREST SEC.	[4] 4 check [4]	seçon cons	CATL					_		_	_		_	1				_	_		-1-	_					
**	L'Artign interna nel cquipo	. villandon:	Nombre de s	supo		Leyenda	5 mag	mal performație rece proporului geografică Rodul Dicherie II de	a-il-our					HW G	100	opin Adig II provincija provincija	i la Vissori prili regina						_	traado Içinny		cepció		4.4	e		: orlo	
i	5H-4PE-(3PY	Hivel	PHIO			900 900 900 900 900 90	Direct Cree	rea de araba los de arabasas no de arabasas lunco de disposo						Takk	21		18547						100		en din c	OTUPO TO	MEAN!	1.9% (*0*	Lock, (10)	c	HC	
?	per-per-pa	HIVOL	PH 2.5			45 es		ero de redrojde s		-				T not.		-	100 W	m				- 1		7 Tubb Salatha		yta Fuot (i	tu				_	
2	BH-000-1140			otteo	- 13	1984	Hair							E NC	9	and the second		13.	LA8	OR.	16		-			4 % M3	-			\Box	\neg	
5	EN-096-233	Малон.		. /				Name of Street,	ide just				-	c .		T	15	Recept	ide de	muest	THE S		Char		=					\Box		
	он-оре-1236 он-оре-1236 он-оре-1433		H HETE	opoloci	CA	honse	Fee	navab i	Town.	dez.	Lac	5 P	۾ دھ	510	N		12	11	HA	174	1 7		Coop	U LAL BY	gueco d	M HETTL	444		_			
	ғи-арғ-332		110			Feda Hor	_	03.7			+	- P			a		2		1.	41	5		Lordon	last M	A:1.34	te ma	ecu.			c	MC	
٨						-γπ		to de				J	eze i	ple	ψ.		1	00	10:	0.	1		\vdash	÷	_	terler	_				\dashv	
Ass	avyainnes de vocepci	de de muestras:				_	-	-			_	-			7	-		-	-	-		_	_		_					4	=	

	ALAE	3				CADEN	A DE CU	STODIA	- RUII	DO				1 - P.CPE-C13) Q K 19 201-0-139
Da	los del cliente		ANT IN-		-			Droer o	e service	99	0 -		Plan de Monitores	2 2 - 393
3.64	on Social CONT	e pe Hourepeo	y Vtgilano	a ANBIENTA	LPARTICIP	ATINO CON	INP - ARIAN	(A) Catera	de custod	12: 60	-27	-27284	Pág	
-Rei	sona de consecuti	LUIS ROSA	DIO	Comeo i le efann 🎉	(a 14, Ta	rc Donal	Lean	1-forme	de enkaya	T	11	3541		
No	rtve del proyecto	Proyecto	ARIAN	A			199380	7228 Procede	nas o ka	ar de mue	953-0	ARIANI	+ - MACC	ApoHAcochu - YAOLY - JUNI
there	Parto de mutal			lenadas UTM	Penedo	Fech	a y hora de n	wastrao						Observaciones
	Estación	(Puntus UContinuo)		н		Init	clo	Nadición	Line	La La	Lead	2ontficación	Fyanto-Generados da millo	Otron.
П		Puntual	. 26	4:37	Diumo	Fed 10 - 03.23	Hora: 13:44	15 me	1	V	1			A Borloimto de la soperaciones de l Proyecto a 1.3KH al S.E del
'	MA - 2	□ Cominuo	556176	8426134	Nocturno	Fee 11.03.22	Hora: 05114	15 min	/	1	1	21	H	deposito da relaves.
		Puntosil	0357899	-6219	Diumo		12:50		1	1	1			A Sottwarto deles operaciones del projecto a 2.3 KM al NO del deposito de relaves.
1	MA - 3	Continuo	03540	8729319	Necturna	71.03 22	DAIC!	15 min	V	/	/	21	M	deposite de relaves.
,		Primbus!			Diumo	NA.	- 10000			- 4				White the same and
Ľ		☐ Comireo			Nocturno		5							
П		Puntul			Diumo	9.4								Merecion de Nivel
Ľ	:	Continuo			Nocturna	late .	70							
[:]		Punbusi			Diumo	4.4	75							de Russo Llevado
Ŀ		Continuo			Noctume	with the same of t	~							
š		Punburi			Diumo	Terral Control	77							a cake he to indicated
		Continuo			Nocturne	Total .							-	Y/O CON FORMI AND
•		☐ Purbuil ☐ Çenjimia			Diurna	Parts 1	Page 1							del cleente
Н				-	Noctirno	Print								
		Continuo			Diurno	Fere.	Pini				-			
Н		U Person		+	Noctumo	yung .	Peri							
,		☐ Puntual ☐ Continue			Diurna	N' 4	100							
\perp					Noctumo						-			
		aloción de equipos u	Mizados:	Leyenda:		SCHIPTC ACA	СН		-	715	nie Sthill	LICOMATE AL BIO		
line	Cucipo 4 letro del ecucio	kombre de e	:160	7		4-4-2			·	7	MI NATIONAL PART		- 1	
H		Sauce Fra		- 14					Les	40.00	C 1	.,		
	W-004-/440	SONOHetro 605							r=4r	WENT IN	u			
H	M-epe-332	842		Observac	iones de Rec	epción de mi	sectrac:			_	-	A. Lat	10Ra	Misestreado por 🔯 458 🔲 Dete
H												100 000	18	
3						Muestreado	bot.		Clionia	:		Recepción	de muesväc	
6				9,00140	French	ude Forn	nuder	Law R	SADI	0 1	N.	2 17 14	S BH E	
1				Petra Hora		7.22	ے دست	ii 4 s				362 34	70	
1	-				11.0	-1			25 L D			10:)171	
				=m-2	10	poor 7 in mile tig						CAL	10	

Two airc essealath comperitured controllation composition and a 2960624901 - THY 1957405 - (11)719999 - THE HISPASSE - 90/166626

	OAL	AB						CADE	NA	DE	Cl	JST	OE	IA.	M	ATF	ìΖ	AGI	JA								5.0	99544F
F	adoe del clien exir Sosial Co liche de consec nombre del proyect	LJ1	PE MONITO	OREC P DIO	O Y VIGO	LANCIA A Come: Telfons:	ңВіі К	ental a 14 J	PAR	217a	pat	110	(HVA	p- 193	ARI 80	AN.	A)	P'an Into	m de serv de Morii: de de enc edendos p	ayo	790	3	632	,	22	Arc	
			J					Pessonets	-	HNO	1	-	H25cu	BUFF	-	HESQ		Rechen			I		-	Y	40L	1 -	COLUMN TO SERVICE STREET	NIN
			DESCRIPCI		A WIJESTRA	Ubicación		пасон	4	n	Š	S.		n	****	TROS	ne Pa		I	П		П		ρι	CE CE	BY MITU	□lore ·	
реш	Punto de mussivació Esseción	Código de Interetorio	Muestreo	Grupe		Coordenadas (UTM)		P	ANIONA	45741c	OFA Les	Feddles Feddles	Acybr	Crt6	DBOS	0.8.0	351	Selforo	Garden				190)	p#4	Tuesceri Self-rided (Jep4)	éé mgA)	(loro Roel (mg/L)	CRRENVACIONES
1	MW . 5	11176	11-03 22 H: 09:45	N. W.	separ Fich	№842 <i>056</i> 2 535 <i>7814</i>	01	08	1	1	1	1	1	1	1	7	1	/	1	H			-	8,24	270	5.47		a Boom. agous,
	MW - 6	11177	F11-03-27 H // 2-113	AN	Store From	NB729943 F035 <i>R</i> 102		08	J	1	J	1	1	1	1	1		1	1				-	8.56	24}	6,01	-	dipósito de rel 210 Cerispacción cipom agoas eco 240 Cerispacción a 410 m.
1	NN - 7	11179	F1 -03.22 H: 13:14	Q.		n 8730157 935 8 137	01	08	1	1	4	1	1	1	1	1		1	1				-	8,50	223	6,40	-	210 Carispacche, a 410 m.
•			F F		9//	H F				Ц													_		_		1 1	ponto de Ponto de Vertimiento del effuente
,			II F	+		E H	_	-	_		-			_	_		-		+	+	+	H	+		-		-	Doméstico.
,			F			E H		\vdash		Н	-		-	Н	_	Н	-	\vdash	+	$^{+}$	+	Н	+	-	-		1 1	
3			4 []			H E													t	Ħ	t	H	1		_		1 1 1	
0	reripción de s		ndon:				Lay	ervda		=		_	=	Le	yarı	d∎	=		=		_		ır	Clas	Masakon	de la M	letriz Ag	us, Ref: MTP 214.042
-		SE NOLT	IP E PEAL	r fr	0			Fecha Hallo Ma	h⊹kor € €ør		9.8	ino Linbu			Ъпра	ente:			00	Contaction Coppose Ch	oundso ()	mental to	A	MPI hr feld th fit Agentia h, Agentia	784 144	SURFERIOR DOWN TO PROCEED AND ADDRESS OF THE PROCESS OF THE PROCES	H. P. WER	BUB - GRUPC - Na vir - U BETTE
3	ен-оро-12 ви-ор е- 3:		ren torce	tro	7	North Farts		rnar 1.0	do	-		des			àss i			И.	1	12	MAR	2022	1	Streets S Special P Special	Tr.	AGUS AND CRICIA AND CRICIA AGUS CRICIA AGU	GENTE BASIS COUNTY PERM GALLETERNIA CRACE CAUSE	ton. NOTE: A CONTROL OF CALIFFORD TO IN THE CONTROL OF CALIF
СЪ	erveciones / Co	ementankou				'ma	1	For	1				-	-		400	_		1	(0)	0:4		-	an les set	o par:	D	JAL 41	Cleny

	OAL	AB						CAD	ENA	DE	CU	JST	TOD	AI	- M/	ATE	RIZ	AG	UA								T	8	0/6143
	Datos del clier Ranin Social Co Persona de contac Nombre del proyec		Modree Posabi	co As	y Vigilani ZIANA	Careo/Telebro	J.P.	artici Hrar	pati co	yo ((cn	V 4 F	rm,	21A /99	NA)	92	23		Or Ph Int	den de an de h torme c	servic Vonitar Ic ensa	do: leo: lyo:] lugar d	9 2 1E-	90	- 2 368	2- 393	O PS	0C-5	2-22426 pema co cha -
				-				Presentate	HMOS	-		H2500	4	4	-	-	-	-	-	-	-	-			YA	olt	- J	INL	J
	Punto de	25.00			Clasificación	Ubicación	Nº F	rascos	S Tople	Hes	Mes			1		TROS	DEEN		B							CE	T	Clore	
Horr	muestreo / Estación	Codigo de taboratorio	Militaritan	Grupo	Sub-grupo	Coordenadae AJTM:	v	p	Merale	State	Feca	ACYG	crt6	DBOS	Nitrato	S ST	STD	SULFATO	HETERNTROF	NATATOS	0.00	101	-	(°C)	Hq success or pro	Subretas (ppt)	OD (mpt.)	(mg/L) Clare Tetal (mg/L)	OBSERVACIONES
t	MW-2	11310	108:30	S	SuperFict	*8729399 \$0356449	01	08	1	1	1	1	1	1	1	1	1	1	-	V	V	1-		-	8.4	191	6.55	-	a 4 500 m. alsur del Campoment
ŵ	PC	11311	1.08:30	AN	Superficial	#8729399 80356449	-	02	1	1	-	1	-	-	-	-	1	-		-	-	-		-	19		-	-	Canparent
3	BC	11312	108:25	AP	OESTONIZADA	#8729399 E0356889	-	01	1	~	-	-	-	-	_	_	-	-	-	-	-	-				-	-	- 1	
4	BV	1/3/3	+ 13:00	AP	DESIGNIZAR	K .	-	02	1	-	-	1	-	-	-	_	-	-	1	-	+	-	F	-	2		-		
15			R Ht			N E														1	T		П						
0		9	R: H:			RL El													T	T	1	T	П						
7			E B			N:		П			П		П					П	T	T	T		H	T					
8			P.			N E													1	Ť	T	T							
Do	scripción de i	equipos utiliz	ados:				Ley	enda				=		Le	yend	9			=	-	-		_	7	Clas	(Floridae)	ele la M	atria An	ua, Rof: NTP 214.042
ter	Código interno o resulpo		Nontre	de expuip	0		P.F	edha tora	N. Non E. Este		V: VI	drie delloc		Mts:	Temper	eturad	le Mires imbienti		CE OO	Condu	optical optical	HEALTH STATE	2	. Innere	GE Ht: April 1	ino note	SIGNA	Alle Marenta	BUS CHUPO Tendi
1	EM-ODE-	32 6 PS						Mi	ustrea	do po	e	I			Clie	nte:				_	_		instra	1	Ut Appelli	io Usoy Intersine	PREMATA INTERA Par	ACUMA ACTES Main Mare Ton	CAL Market
1						Nontric Fecta:		Man 1.03			ande	22	Luc	_	3 -	-	-	Ν.	N.N.S.	1	2 #	AR 2	1122	4	Mi April	1000	ORGULES AMEN'N	RONDE ENLER	ENTO - AREA DE CILLERRAS DATO - AREA DE CILLERRAS DE - AREA DE SERVICION DE INVECTION O RENVECCION
00	servaciones / C	ementarios.				Pigna	1	F-03	1			+	-	LE	20 F	ott	4		1		3.8	ac		M	restrea	do por:		JALAS	Cliento

ANEXO IV: CERTIFICADOS DE CALIBRACIÓN

VERIFICACION DE GPS

1. PATRON DE COMPARACION:

Punto de Referencia del Instituto Geográfico del Perú

2. UBICACIÓN:

Cruce de Las Palmas con Prolongación Mariscal Cáceres, distrito de Surco, Provincia de Lima, Departamento de Lima

	PSA	D 56	WG	S 84	ALTURA ELIPSOIDA	ELEVACION GEOIDAL	ZONA UTM	CODIGO del IGP
	NORTE	ESTE	NORTE	ESTE	L	GEOIDAL		uel IGF
۱	8656882.816	281831.878	8656514.8	281607.29	97.241	74.168	18	CIC1

3. EQUIPO A VERIFICAR

GPS

Marca : GARMIN
Modelo : ETREX 10
Código ALAB : EM-OPE-332

4. CONDICIONES AMBIENTALES:

Temperatura : 22.2°C
Humedad Relativa : 67.2%
Presión Atmosférica : 755mmHg

5. MEDICIONES REGISTRADAS:

LECTURAS	PSAD56				WGS84			
TOMADAS	NORTE	ESTE	ALTITUD	HORA	NORTE	ESTE	ALTITUD	HORA
Lectura 1	8656883	281832	98	08:30	8656515	281608	95	10:30
Lectura 2	8656883	281832	97	08:40	8656514	281607	97	10:40
Lectura 3	8656881	281832	97	08:50	8656516	281606	97	10:50
Lectura 4	8656883	281830	96	09:00	8656515	281608	97	11:00
Lectura 5	8656883	281832	98	09:10	8656514	281608	98	11:10
Lectura 6	8656883	281833	97	09:20	8656514	281605	98	11:20
PROMEDIO	8656882.67	281831.83	97.2		8656514.7	281607.0	97.0	

FECHA DE VERIFICACION:

Martes 27 de Abril 2021

6. PERSONAL QUE REALIZO LA VERIFICACION:

Eduardo Miranda

7. CONCLUCIONES:

La diferencia entre el promedio de las mediciones realizadas y los valores de referencia del datum PSAD56, son para las coordenadas y altitud respectivamente:

 NORTE
 0.149 m

 ESTE
 0.045 m

 ALTITUD
 0.074 m

La diferencia entre el promedio de las mediciones realizadas y los valores de referencia del datum wgs 84, son para las coordenadas y altitud respectivamente:

NORTE 0.133 m ESTE 0.285 m ALTITUD 0.241 m

Eduardo Miranda Ñ. Jefe de Mantenimiento

Calle las guabas 4125 - Urb. El Naranjal - Los Olivos

Mail: logistica@envirogrouptech.com / web: www.envirogrouptech.com / Cel: RPC: 961768828

CERTIFICADO DE CALIBRACIÓN Nº LC-0017-2022

Expediente: 00537

Fecha de emisión: 2022-02-07

1. Solicitante: ANALYTICAL LABORATORY E.I.R.L.

Dirección: AV. GUARDIA CHALACA 1877 - BELLAVISTA - CALLAO

2. Instrumento calibrado: Muestreador de Partículas de Alto Volumen

Marca: THERMO SCIENTIFIC

Modelo: G10557 N° de serie: P9482X

Código: EM-OPE-551

Procedencia: ESTADOS UNIDOS

3. Lugar de calibración : Laboratorio de Caudal de ALAB

4. Fecha de calibración: 2022-02-03

5. Método de calibración

La calibración fue realizada de acuerdo al EPA Compendium Method IO-2.1.

Pág. 1 de 2

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

6. Trazabilidad

Marca/Modelo/Serie	Descripción	Certificado de calibración
Tisch / TE-5028A / 3403	Calibrador Variflow	TE-5028A
Control Company / 4247 / 122716367	Barotermohigrómetro	LHA-0103-2021 / LPA-0048-2021

Oscar F. Vivanco Valerio
Jefe de Laboratorio de Metrología

Certificado de calibración Nº LC-0017-2022

Pág. 2 de 2

7. Condiciones de calibración

Temperatura ambiental	Inicio 26,8 °C	Final 26,6 °C	
Humedad relativa	59,0 %	61,0 %	
Presión	1008 hPa	1008 hPa	

8. Resultados de la calibración

Ta(K):	299,7		Presión (in Hg):	29,8	Slope:	1,041		
Ta(°C):	26,7		Pa (mm Hg):	756,1	Int:	-0,01338		
Run	Calibrador	Qa	Muestreador	Pf		Look Up - Qa	% off	U
<u>Number</u>	<u>"H2O</u>	m3/min	<u>"H2O</u>	<u>mm Hg</u>	Po/Pa	m3/min	<u>Diff</u>	<u>m3/min</u>
1	3,58	1,157	28,29	52,788	0,930	1,148	0,767	0,030
2	3,70	1,176	24,20	45,155	0,940	1,161	1,280	0,030
3	3,81	1,194	20,21	37,712	0,950	1,174	1,649	0,031
4	3,97	1,219	14,06	26,240	0,965	1,193	2,094	0,031
5	4,15	1,245	9,97	18,614	0,975	1,206	3,139	0,032

9. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO con Nº 001474
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN Nº LC-0021-2022

Expediente: 00537

Fecha de emisión: 2022-02-21

Solicitante: ANALYTICAL LABORATORY E.I.R.L. 1.

> Av. Guardia Chalaca 1877 - Bellavista - Callao Dirección :

2. Instrumento calibrado: Muestreador de Partículas de Alto Volumen

THERMO SCIENTIFIC Marca:

Modelo: G10557

Nº de serie : P9680X

Código: EM-OPE-1133

Procedencia: No indica

3. Lugar de calibración : Laboratorio de Caudal de ALAB

Fecha de calibración: 2022-02-17 4.

5. Método de calibración

> La calibración fue realizada de acuerdo al EPA Compendium Method IO-2.1.

Trazabilidad 6.

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de

Pág. 1 de 2

producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre

competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Marca/Modelo/Serie	Descripción	Certificado de calibración		
Tisch / TE-5028A	Calibrador Variflow	TE-5028A		
Control Company / 4247 / 122716367	Barotermohigrómetro	LHA-0103-2021 / LPA-0048-2021		

Juan Carlos Bartolo Chuquibala Responsable de Laboratorio

Certificado de calibración Nº LC-0021-2022

Pág. 2 de 2

7. Condiciones de calibración

Temperatura ambiental	Inicio 26,2 °C	Final 26,4 °C
Humedad relativa	62,0 %	63,0 %
Presión	1009 hPa	1009 hPa

8. Resultados de la calibración

Ta(K): Ta(°C):	299,3 26,3		Presión (in Hg): Pa (mm Hg):	29,8 756,8	Slope: Int:	1,041 -0,01338		
Run	Calibrador	Qa	Muestreador	Pf		Look Up - Qa	% off	U
Number	<u>"H2O</u>	m3/min	<u>"H2O</u>	<u>mm Hg</u>	<u>Po/Pa</u>	m3/min	<u>Diff</u>	<u>m3/min</u>
1	2,99	1,057	28,04	52,327	0,931	1,138	-7,654	0,030
2	3,17	1,088	24,08	44,938	0,941	1,150	-5,7 4 0	0,031
3	3,29	1,108	20,12	37,553	0,950	1,162	-4,849	0,030
4	3,49	1,141	14,03	26,176	0,965	1,181	-3,484	0,031
5	3,61	1,161	10,08	18,820	0,975	1,194	-2,818	0,031

9. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO 001566
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN Nº LC-0038-2021

Expediente: 00072

Fecha de emisión: 2021-05-24

1. Solicitante: ANALYTICAL LABORATORY E.I.R.L

Dirección: Av. Guardia Chalaca 1877 - Bellavista - Callao

2. Instrumento calibrado: Muestreador de partículas de alto volumen

Marca: Thermo Scientific

Modelo: VFC

Nº de serie: P92251X

Código: EM-OPE-06

Procedencia: Estados Unidos

3. Lugar de calibración: Laboratorio de Caudal de ALAB

4. Fecha de calibración: 2021-05-22

5. Método de calibración

Trazabilidad

6.

La calibración fue realizada de acuerdo al EPA Compendium Method IO-2.1.

Marca/Modelo/Serie

Descripción Certificado de calibración

Tisch / TE-5028A / 3403 Calibrador Variflow TE-5028A

Control Company / 4247 /

122716367 Barotermohigrómetro

T-2159-2020 / P-2654-2020

Oscar F. Vivanco Valerio

Jefe de Laboratorio de Metrología

Pág. 1 de 2

Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización previa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Certificado de calibración Nº LC-0038-2021

Pág. 2 de 2

7. Condiciones de calibración

Temperatura ambiental	Inicio 21,4 °C	Final 21,2 ℃
Humedad relativa	63,0 %	65,0 %
Presión	1013 hPa	1012 hPa

8. Resultados de la calibración

Ta(K):	294,3		Presión (in Hg):	29,9	Slope:	1,041		
Ta(°C):	21,3		Pa (mm Hg):	759,4	Int:	-0,01338		
Run	Calibrador	Qa	Muestreador	Pf		Look Up - Qa	% off	U
<u>Number</u>	<u>"H2O</u>	m3/min	<u>"H2O</u>	mm Hg	Po/Pa	m3/min	<u>Diff</u>	m3/min
1	3,45	1,124	28,06	52,360	0,931	1,136	-1,105	0,029
2	3,55	1,140	24,18	45,119	0,941	1,149	-0,828	0,030
3	3,70	1,163	20,39	38,055	0,950	1,160	0,268	0,030
4	3,85	1,186	14,03	26,186	0,966	1,181	0,439	0,030
5	3,95	1,201	10,09	18,825	0,975	1,192	0,778	0,031

9. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO".
- El método de referencia establece que los flujos deben tener un % de diferencia máximo de ± 3%
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

CERTIFICADO DE CALIBRACIÓN Nº LC-0054-2021

Expediente: 00369

Fecha de emisión: 2021-07-22

1. Solicitante: ANALYTICAL LABORATORY E.I.R.L

Dirección: Av. Guardia Chalaca 1877 - Bellavista - Callao

2. Instrumento calibrado: Muestreador de partículas de alto volumen

Marca: TISCH

Modelo: TE-10557 Nº de serie: P6233TSP

Código: EM-OPE-1394

Procedencia: Estados Unidos

3. Lugar de calibración: Laboratorio de Caudal de ALAB

4. Fecha de calibración: 2021-07-20

5. Método de calibración

La calibración fue realizada de acuerdo al EPA Compendium Method IO-2.1.

6. Trazabilidad

Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

Pág. 1 de 2

Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización previa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

_	Marca/Modelo/Serie	Descripción	Certificado de calibración
Ī	Tisch / TE-5028A / 3403	Calibrador Variflow	TE-5028A
(Control Company / 4247 / 122716367	Barotermohigrómetro	T-2159-2020 / P-2654-2020

Oscar F. Vivanco Valerio
Jefe de Laboratorio de Metrología

Certificado de calibración Nº LC-0054-2021

Pág. 2 de 2

7. Condiciones de calibración

Temperatura ambiental	Inicio 20,3 °C	Final 20,3 ℃
Humedad relativa	65,0 %	66,0 %
Presión	1011 hPa	1011 hPa

8. Resultados de la calibración

Ta(K):	293,3		Presión (in Hg):	29,9	Slope:	1,041		
Ta(°C):	20,3		Pa (mm Hg):	758,3	Int:	-0,01338		
Run	Calibrador	Qa	Muestreador	Pf		Look Up - Qa	% off	U
<u>Number</u>	<u>"H2O</u>	m3/min	<u>"H2O</u>	mm Hg	Po/Pa	m3/min	<u>Diff</u>	<u>m3/min</u>
1	3,85	1,185	28,09	52,427	0,931	1,211	-2,187	0,030
2	4,00	1,208	24,09	44,959	0,941	1,225	-1,433	0,030
3	4,10	1,223	20,21	37,723	0,950	1,237	-1,183	0,030
4	4,25	1,244	13,96	26,053	0,966	1,259	-1,168	0,031
5	4,37	1,262	10,01	18,681	0,975	1,271	-0,734	0,032

9. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO con el Nº 000054.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 052

CERTIFICADO DE CALIBRACIÓN Nº LCA-0045-2022

Expediente : 00208 Página 1 de 2

Fecha de emisión : 2022-03-05

Solicitante : Analytical Laboratory E.I.R.L.

Dirección : Av. Guardia Chalaca Nº 1877 - Bellavista - Callao

2. Instrumento calibrado: (Caudalímetro) Rotámetro

Marca : Dwyer

Modelo : No indica

Nº de serie : No indica

Código : EM-OPE-493

Procedencia : No indica

Alcance : 0,010 L/min a 0,100 L/min

División de escala : 0,005 L/min

Diámetro aproximado de

la línea de flujo

5 mm

3. Lugar de calibración : Laboratorio de Caudal de Alab

4. Fecha de calibración : 2022-03-03

5. Método de calibración

La calibración se realizó por comparación directa siguiendo el Procedimiento ME-009 para la calibración de Caudalímetro de gases." Edición Digital 1: 2008. CEM-España (Numeral 5.3.1 - Calibración en situación A)

6. Trazabilidad

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP)

Código	Descripción	Certificado de calibración
PTC-004	Flujómetro (calibrador primario de flujo de gas) con rango de trabajo desde 0,05 L/min a 5 L/min	CCP-0633-002-21

Juan Carlos Bartolo Chuquibala Responsable de Laboratorio

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 052

CERTIFICADO DE CALIBRACIÓN Nº LCA-0045-2022

Página 2 de 2

7. Condiciones de calibración

Inicio Final
Temperatura ambiental : 23,2 °C 24,0 °C
Humedad relativa : 65,6 % 66,6 %
Presión atmosférica : 1013,1 mbar 1012,1 mbar

8. Resultados de la calibración

Caudal Indicado	Caudal de Referencia	Error	Incertidumbre
(L/min)	(L/min)	(L/min)	(L/min)
0,050	0,061	-0,011	0,011
0,068	0,082	-0,014	0,011
0,074	0,095	-0,021	0,011
0,095	0,104	-0,009	0,011

El caudal convencionalmente verdadero (CCV) resulta de la relación:

CCV = Indicación del instrumento - error

9. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO y Nº 001813.
- Antes de la calibración no se realizó ningún tipo de ajuste.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.
- Para una mejor lectura se subdividió la división de escala en 5 partes.

CERTIFICADO DE CALIBRACIÓN Nº LFQ-0039-2021

Expediente: 00537

Fecha de emisión: 2021-10-13 Página 1 de 2

1. Solicitante : ANALYTICAL LABORATORY E.I.R.L.

2. Dirección : Av. Guardia Chalaca 1877 - Bellavista - Callao

3. Instrumento : MEDIDOR DE OXIGENO DISUELTO

Marca / Fabricante : HACH

Modelo : HQ40d

Serie : 151000017655

Serie de la sonda : 090402592002

Procedencia : USA

Código de identificación : EM-OPE-856

Intervalo de Indicación : 0,10 mg/L a 20,00 mg/L

Resolución : 0,01 mg/L

4. Lugar de calibración : Laboratorio de Fisicoquímica de ALAB

5. Fecha de calibración : 2021-10-12

6. Método de calibración :

La Calibración se realizó por comparación de la indicación del equipo contra Material Estandar de valor nominal conocido.

7. Trazabilidad:

Se utilizó una solución cero oxígeno (2 componentes), código de producto HI7040L.

Producto	Marca	N° Lote	Expiración
HI7040-1	Hanna Instruments	4260	2024-05
HI7040-2	Hanna Instruments	4155	2024-04

8. Condiciones de calibración :

Temperatura ambiental : 24,3 °C 24,6 °C

Humedad relativa : 63 % H.R. 65,0 % H.R.

Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.

ALAB EIRL. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento o equipo después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización previa por escrito de ALAB EIRL.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB EIRL.

Oscar Félix Vivanco Valerio Jefe de Laboratorio de Metrología

Certificado de calibración N° LFQ-0039-2021

Página 2 de 2

9. Resultados:

Valor referencia (mg/L)	Lectura promedio del instrumento (mg/L)	Error promedio encontrado (mg/L)	Incertidumbre (mg/L)
0,00	0,16	0,16	0,12
8,31	8,27	-0,04	0,12

Valor referencia (%)	Lectura promedio del instrumento (%)	Error promedio encontrado (%)	Incertidumbre (%)
0,0	1,9	1,9	1,2
100,0	99,9	-0,1	1,2

Valor de referencia = Lectura del Instrumento - Error

- Se colocó en el instrumento una etiqueta autoadhesiva con la indicación "CALIBRADO" y Nº 000790
- Los resultados son emitidos para la temperatura de referencia de 25 °C .
- La incertidumbre de medición expandida reportada es la incertidumbre de medición estándar multiplicada por el factor de cobertura k=2 de modo que la probabilidad de cobertura corresponde aproximadamente a un nível de confianza del 95 %.

CERTIFICADO DE CALIBRACIÓN Nº LFQA-0077-2021

Expediente: 00537 Página 1 de 2

Fecha de emisión: 2021-10-13

1. Solicitante : ANALYTICAL LABORATORY E.I.R.L

Dirección : Av. Guardia Chalaca 1877 - Bellavista

- Callac

2. Instrumento calibrado : MULTIPARÁMETRO (Sonda de pH)

• Marca : HACH

• Modelo : HQ40d

• Número de serie : 151000017655

• Serie del electrodo : 210882564802

• Identificación : EM-OPE-856

• Procedencia : USA

• Intervalo de medida : 0 a 14 pH

• Resolución : 0,01 pH

3. Lugar de calibración : Laboratorio de Fisicoquímica de ALAB

4. Fecha de calibración : 2021-10-12

5. Método de calibración

La calibración se realizó por comparación con material de referencia certificado según el procedimiento PC-020 "Procedimiento para la calibración de medidores de pH". Segunda Edición. 2017. INACAL.

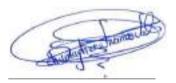
Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.

ALAB EIRL no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento o equipo después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización previa por escrito de ALAB E.I.R.L.


El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

6. Trazabilidad :

Se utilizó las soluciones tampones patrones de pH:

рН	Nº Lote	Certificado de Análisis	Incertidumbres (pH)
4,009	CC651498	4280-10911658	0,011
6,996	CC642263	4281-10753340	0,011
10,018	CC650628	4282-10891956	0,011

y un termómetro patrón de código PTT-001, con Certificado de Calibración № LT-010-2021

Oscar F. Vivanco Valerio
Jefe de Laboratorio de Metrología

Certificado de Calibración Nº LFQA-0077-2021

Página 2 de 2

7. Condiciones de calibración:

Inicial Final

Temperatura Ambiental : 21,9 °C 21,2 °C Humedad Relativa : 68,0 % H.R. 69,0 % H.R.

8. Resultados:

INDICACIÓN DEL PHMETRO	SOLUCIÓN TAMPÓN (BUFFER) PATRÓN	ERROR	INCERTIDUMBRE
(pH)	(pH)	(pH)	(pH)
3,99	4,009	-0,019	0,014
7,04	6,996	0,044	0,014
10,06	10,018	0,042	0,012

- Valor de la solución tampón patrón = Indicación del pHmetro Error
- Los resultados son emitidos para la temperatura de referencia de 25 °C
- La incertidumbre de la medición se da con un nivel de confianza aproximado del 95 % con un factor de cobertura $\,k=2\,$.

9. Observaciones:

- Antes del ajuste las lecturas del equipo para los patrones 4,009 pH; 6,996 pH y 10,018 pH fueron 3,95 pH; 6,98 pH y 9,97 pH respectivamente.
- Después del ajuste las lecturas del equipo para los patrones 4,009 pH; 6,996 pH y 10,018 pH fueron 3,99 pH; 7,03 pH y 10,04 pH respectivamente.
- Se colocó una etiqueta autoadhesiva en el instrumento con la indicación "CALIBRADO" y N° 000790.

CERTIFICADO DE CALIBRACIÓN Nº LFQA-0078-2021

Expediente: 00537 Página 1 de 2

Fecha de emisión: 2021-10-13

1. Solicitante : ANALYTICAL LABORATORY E.I.R.L.

2. Dirección : Av. Guardia Chalaca 1877 - Bellavista - Callao

3. Instrumento : MEDIDOR DE CONDUCTIVIDAD

Marca : HACH

Modelo : HQ40d

Serie : 151000017655

Serie del electrodo : 08183242588880

Procedencia : USA

Código de identificación : EM-OPE-856

Intervalo de Indicación : 0,01 µS/cm a 200 mS/cm

Resolución : $0,1 \mu S/cm; 1 \mu S/cm;$

Ubicación : NO INDICA

4. Lugar de calibración : Laboratorio de Físicoquímica de ALAB E.I.R.L.

5. Fecha de calibración : 2021-10-12

6. Método de calibración :

La calibración se realizó por comparación con material de referencia certificado tomando como referencia el procedimiento PC-022 "Procedimiento para la calibración de Conductímetros" Primera Edición. 2014. INDECOPI.

7. Trazabilidad :

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.L.R.L.

Valor Certificado a 25 °C	N° de lote	Certificado de Análisis	Incertidumbre (k=2)
99,70 μS/cm	CC20442	4066-11681671	2,10 μS/cm
998,00 μS/cm	CC20520	4067-11758805	4,6 μS/cm
1412,00 μS/cm	CC20203	4173-11497708	4,6 μS/cm

Código	Instrumento Patrón	Certificado de calibración
PTT-005	Termómetro digital de incertidumbre 0,039 °C a 0,073 °C	TE-1072-2020

8. Condiciones de calibración :

 Inicial
 Final

 Temperatura ambiental
 :
 21,3 °C
 21,1 °C

 Humedad relativa
 :
 69 % H.R.
 67 % H.R.

Meyler Villalobos Bravo

Responsable del laboratorio de Fisicoquímica

Certificado de calibración N° LFQA-0078-2021 Página 2 de 2

9. Resultados:

Valor del Certificado	Lectura promedio del equipo	Error	Incertidumbre
99,70 μS/cm	114,8 μS/cm	15,10 μS/cm	2,11 μS/cm
998,000 μS/cm	1126,43 μS/cm	128,430 μS/cm	4,94 μS/cm
1412,000 μS/cm	1410,94 μS/cm	-1,060 μS/cm	5,06 μS/cm

Valor Certificado = Lectura del Equipo - Error

10. Observaciones:

- Se colocó en el instrumento una etiqueta autoadhesiva con la indicación "CALIBRADO" y Nº 000790
- Los resultados son emitidos para la temperatura de referencia de 25 $^{\circ}\text{C}$.
- Valor de la constante de celda del instrumento es : 0,449 1/cm 1/cm.
- Las incertidumbres de medición expandidas reportadas son las incertidumbres de medición estándares multiplicadas por el factor de cobertura k=2 de modo que la probabilidad de cobertura corresponde aproximadamente a un nível de confianza del 95 %.

CERTIFICADO DE CALIBRACIÓN Nº LHA-0058-2021

Expediente : 00222 Página 1 de 2

Fecha de emisión : 2021-05-06

1. Solicitante : ALAB LABORATORY E.I.R.L.

Dirección : Av. Guardia Chalaca 1877 - Bellavista - Callao

2. Instrumento calibrado : HIGRÓMETRO Y TERMÓMETRO AMBIENTAL

(ESTACIÓN METEOROLÓGICA)

Marca : DAVIS INSTRUMENTS

Modelo : 6250

Nº de serie : D100923A116
 Código : EM-OPE-1276

Alcance Interno : 1% H.R.a 100% H.R.; 0 °C a 60 °C Alcance Externo -40 °C a 65 °C; 1% H.R. a 100 % H.R.

Resolución Interno : 1°C ; 1 %H.R. Resolución Externo : 1°C ; 1 % H.R.

Procedencia : USA

3. Lugar de calibración : En el laboratorio de temperatura y Humedad

de ALAB EIRL

4. Fecha de calibración : 2021-05-04 al 2021-05-05

5. Método de calibración

La calibración se realizó por comparación directa siguiendo el PC-026 "Procedimiento para la calibración de higrómetros y termómetros ambientales". Primera Edición. 2019. INACAL

6. Trazabilidad:

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP)

Código	Descripción	Certificado de calibración
PTH-002	Termohigrómetro Digital Con incertidumbre de 1,31 %H.R. a 2,07 %H.R. 0,11 °C a 0,16°C	LH-119-2020 / INACAL - DM

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Oscar F. Vivanco Valerio
Jefe de Laboratorio de Metrología

Certificado de calibración Nº LHA-0058-2021

Página 2 de 2

7. Condiciones de Calibración :

	INICIO	FINAL
Temperatura ambiental	21,6 °C	22,6 °C
Humedad relativa	62,9 % h.r.	66,7 % h.r.

8. Resultados de la Calibración :

Para el Termómetro interno

Temperatura Indicada (°C)	Temperatura Convencionalmente Verdadera (°C)	Corrección (°C)	Incertidumbre (°C)
11	10,00	-1,00	0,74
21	20,08	-0,92	0,70
30	30,08	0,08	0,74
40	40,00	0,00	0,74

La temperatura convencionalmente verdadera (TCV) resulta de la relación:

TCV = Indicación del termómetro + corrección

Para el Higrómetro

Humedad Relativa Indicada (%h.r.)	Humedad Relativa Convencionalmente Verdadera (%h.r.)	Corrección (%h.r.)	Incertidumbre (%h.r.)
49	50,00	1,00	2,2
66	70,02	4,02	2,2
84	90,00	6,00	2,2

La Humedad Relativa convencionalmente verdadera (H.R.CV) resulta de la relación:

H.R.CV = Indicación del Higrómetro + corrección

9. Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO".
- Antes de la calibración no se realizó ningún tipo de ajuste.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.
- La temperatura promedio dentro de la cámara climática, durante la calibración del higrómetro fue: 22,41° C

CERTIFICADO DE CALIBRACIÓN Nº LHA-0086-2022

Expediente : 537 Página 1 de 2

Fecha de emisión : 2022-02-24

1. Solicitante : ANALYTICAL LABORATORY E.I.R.L.

Dirección : AV. GUARDIA CHALACA 1877 - BELLAVISTA - CALLAO

2. Instrumento calibrado : HIGRÓMETRO Y TERMÓMETRO AMBIENTAL

(ESTACIÓN METEOROLÓGICA)

Marca : DAVIS INSTRUMENTS

Modelo : VANTAGE PRO2

Nº de serie : Ilegible

Código : EM-OPE-21

Alcance Interno : 0 °C a 60 °C ; 10 %h.r. a 90 %h.r. Alcance Externo :-40 °C a 65 °C ; 0 %h.r. a 100 %h.r.

Resolución Interno : 0,1°C ; 1 %h.r. Resolución Externo 0,1°C ; 1 %h.r.

Procedencia : U.S.A.

3. Lugar de calibración : En el laboratorio de Temperatura y Humedad de ALAB

EIRL

4. Fecha de calibración : 2022-02-23 al 2022-02-24

5. Método de calibración :

La calibración se realizó por comparación directa siguiendo el procedimiento:

PC-026 "Procedimiento para la calibración de higrómetros y termómetros ambientales".
 Primera Edición. 2019. INACAL

6. Trazabilidad:

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP)

Código	Descripción	Certificado de calibración
	Termohigrómetro Digital	
PTT-002	Marca: Vaisala; Modelo: MI70	LH- 021 -2022
	Exactitud: ± 1,2 % a 1,7 %	
	Termómetro Digital	
PTT-005	Marca: Delta Ohm; Modelo: HD 2107.1	LT-217-2021
	Exactitud: ± 0,3 °C	

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Randy C. Santiago Jurado

Responsable de Laboratorio de

Temperatura y Humedad

Certificado de calibración Nº LHA-0086-2022

Página 2 de 2

7. Condiciones de Calibración :

	INICIO	FINAL
Temperatura ambiental	22,0 °C	22,3 °C
Humedad relativa	37,2 % h.r.	41,7 % h.r.

8. Resultados de la Calibración :

Para el Termómetro interno

Temperatura Indicada (°C)	Temperatura Convencionalmente Verdadera (°C)	Corrección (°C)	Incertidumbre (°C)
9,9	10,00	0,10	0,48
20,0	20,00	0,00	0,48
30,2	30,00	-0,20	0,48
40,2	40,00	-0,20	0,48

La temperatura convencionalmente verdadera (TCV) resulta de la relación: TCV = Indicación del termómetro + corrección

Para el Higrómetro

Humedad Relativa Indicada (%h.r.)	Humedad Relativa Convencionalmente Verdadera (%h.r.)	Corrección (%h.r.)	Incertidumbre (%h.r.)
55	50,00	-5,00	2,2
74	70,00	-4,00	2,2
87	90.00	3.00	2.2

La Humedad Relativa convencionalmente verdadera (H.R.CV) resulta de la relación: H.R.CV = Indicación del Higrómetro + corrección

9. Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO"con el Nº 001090.
- Antes de la calibración no se realizó ningún tipo de ajuste.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.
- La temperatura promedio dentro de la cámara climática, durante la calibración del higrómetro fue: 22,51° C
- (*) Código de identificación indicado en una etiqueta adherida al instrumento.

CERTIFICADO DE CALIBRACIÓN Nº LPA-0017-2022

Página 1 de 2

Expediente : 537

Fecha de emisión : 2022-02-24

1. Solicitante : ANALYTICAL LABORATORY E.I.R.L.

Dirección : AV. GUARDIA CHALACA 1877 - BELLAVISTA -

CALLAO

2. Instrumento calibrado : INSTRUMENTO DE PRESIÓN ABSOLUTA

(ESTACIÓN METEOROLÓGICA)

Marca : DAVIS INSTRUMENTS

Modelo : VANTAGE PRO2

Nº de serie : llegible

Código : EM-OPE-21

Alcance: 540 mbar a 1100 mbar

Resolución : 0,1 mbar

Procedencia : U.S.A.

3. Lugar de calibración : En el laboratorio de Presión de ALAB E.I.R.L.

4. Fecha de calibración : 2022-02-24

5. Método de calibración :

La calibración se realizó por comparación directa siguiendo el procedimiento PC-024 "Procedimiento para la calibración de instrumentos de presión absoluta (barómetros)". Primera Edición. 2018. INACAL

6. Trazabilidad :

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP)

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Código	Descripción	Certificado de calibración
PTP-005	Manómetro de presión absoluta de clase 0,01%	LFP-056-2021 / INACAL-DM

Randy C. Santiago Jurado Responsable de Laboratorio de Presión, Fuerza y Par Torsional

Certificado de calibración Nº LPA-0017-2022

Página 2 de 2

7. Condiciones de Calibración:

Temperatura ambiental Inicial: 21,2 °C Final: 21,7 °C

Humedad relativa Inicial: 62,6 % Final: 64,5 %

Presión atmosférica Inicial: 1012,0 mbar Final: 1013,0 mbar

8. Resultados de la Calibración :

Indicación del instrumento a calibrar	Error	Indicación del instrumento Patrón	Incertidumbre
mbar	mbar	mbar	mbar
795,5	-5,31	800,81	0,52
896,1	-4,34	900,44	0,52
1 093,9	-4,00	1 097,90	0,52

9. Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO" con el Nº 0001090.
- Antes de la calibración no se realizó ningún tipo de ajuste.
- La información del error máximo permitido fue tomada del manual del fabricante.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

CERTIFICADO DE CALIBRACIÓN Nº LPA-0029-2021

Expediente : 00222 Página 1 de 2

Fecha de emisión: 2021-05-06

1. Solicitante: ALAB LABORATORY E.I.R.L.

Dirección : Av. Guardia Chalaca 1877 - Bellavista - Callao

2. Instrumento calibrado: INSTRUMENTO DE PRESIÓN ABSOLUTA

(ESTACIÓN METEOROLÓGICA)

Marca : DAVIS INSTRUMENTS

Modelo : 6250

Nº de serie : D100923A116 Código : EM-OPE-1276

Alcance: 540 mbar a 1100 mbar

Resolución : 0,1 mbar Procedencia : USA

3. Lugar de calibración : en el laboratorio de Presión de ALAB EIRL

4. Fecha de calibración: 2021-05-04

5. Método de calibración :

La calibración se realizó por comparación directa siguiendo el procedimiento PC-024 "Procedimiento para la calibración de instrumentos de presión absoluta (barómetros)". Primera Edición. 2018. INACAL

6. Trazabilidad:

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP)

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Código	Descripción	Certificado de calibración	
PTP-004	Manómetro de presión absoluta	SIMCO	
P1P-004	de clase 0.02%	SIIVICO	

Oscar F. Vivanco Valerio Jefe de Laboratorio de Metrología

Certificado de calibración Nº LPA-0029-2021

Página 2 de 2

7. Condiciones de Calibración:

Temperatura ambiental Inicial: 21,4 °C Final: 24,4 °C

Humedad relativa Inicial: 62,3 % Final: 64,1 %

Presión atmosférica Inicial: 1004,0 mbar Final: 1005,0 mbar

8. Resultados de la Calibración :

Indicación del instrumento a calibrar	Error	Incertidumbre	Error máximo permitido	
mbar	mbar	mbar	mbar	
800,0	-2,3	0,52	1,0	
900,0	-0,5	0,52	1,0	
1 100,0	-2,7	0,52	1,0	

9. Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO".
- Antes de la calibración no se realizó ningún tipo de ajuste.
- La información del error máximo permitido fue tomada del manual del fabricante.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

CERTIFICADO DE CALIBRACIÓN Nº LVV-0053-2021

Expediente : 00371

Fecha de emisión: 2021-08-16

1. Solicitante : ANALYTICAL LABORATORY E.I.R.L

Dirección : Av. Guardia chalaca Nº 1877, Bellavista, Callao

2. Instrumento calibrado : ANEMÓMETRO (CORRENTOMETRO)

INDICADOR

Marca : GLOBAL WATER

Modelo : FP101

Nº de serie : 48504

Código : EM-OPE-1275

Alcance : 0,1 m/s a 6,1 m/s

Resolución : 0,1 m/s

Procedencia : No indica

3. Lugar de calibración : En el laboratorio de Velocidad de viento de ALAB

EIRL

4. Fecha de calibración: 2021-08-16

5. Método de calibración :

La calibración se realizó por comparación directa siguiendo el MVAL-LAB-6 "Procedimiento para la Calibración de anemómetros" de ALAB EIRL

6. Trazabilidad:

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP)

Código	Descripción	Certificado de calibración
PWW-001	Anemómetro digital 0,063456 m/s a 0,62122 m/s	UK20866 / BSRIA Instrument Solutions

Randy C. Santiago Jurado

Responsable de Laboratorio de Velocidad de viento

Los resultados presentados corresponden sólo al item calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

El certificado de calibración es un documento oficial de interés público, su adulteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones penales y civiles en la materia. Sin perjuicio de lo señalado, dicho uso puede configurar por sus efectos una infracción a las normas de protección al consumidor y las que regulan la libre competencia.

Al usuario le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

ALAB E.I.R.L. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración es trazable a patrones nacionales o internacionales, los cuales realizan las unidades de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración no podrá ser reproducido parcialmente, excepto con autorización expresa por escrito de ALAB E.I.R.L.

El certificado de calibración no es válido sin la firma del responsable técnico de ALAB E.I.R.L.

Certificado de calibración Nº LVV-0053-2021

Página 2 de 2

7. Condiciones de Calibración :

Temperatura ambiental Inicial : 21,3 °C Final : 22,5 °C Humedad relativa Inicial : 62,3 % Final : 63,5 %

8. Resultados de la Calibración :

Valor Nominal	Patron	Instrumento	Correción	Incertidumbre
m/s	m/s	m/s	m/s	m/s
1	1,01	1,2	-0,19	0,36
2	1,97	2,2	-0,23	0,36
3	2,95	3,2	-0,25	0,42
6	5,87	6,0	-0,13	0,45

Valor convecionalmente verdadera (VCV) Resulta de la indicación : Indicación del anemómetro + correción

9. Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO"con el Nº 000443.
- Antes de la calibración no se realizó ningún tipo de ajuste.
- La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k = 2 que, para una distribución normal corresponde a una probabilidad de cobertura de aproximadamente 95 %.

ANEXO V : CERTIFICADOS DE ACREDITACIÓN

Certificado

La Dirección de Acreditación del Instituto Nacional de Calidad – INACAL, en el marco de la Ley Nº 30224, OTORGA el presente certificado de Renovación de la Acreditación al:

ANALYTICAL LABORATORY E.I.R.L.

Laboratorio de Ensayo

Prolongación Zarumilla, Mz D2 Lt 3, Asociación Daniel Alcides Carrión, distrito de Bellavista, provincia constitucional del Callao, departamento de Lima

Con base en la norma

NTP-ISO/IEC 17025:2017 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Informes de Ensayo con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-06P-21F que forma parte integral del presente certificado llevando el mismo número del registro indicado líneas abajo.

Fecha de Renovación. 26 de julio de 2019 Fecha de Vencimiento: 25 de julio de 2023

ESTELA CONTHERAS JUGO

Directora. Dirección de Acreditación - INACAL

Cedula Nº : 0547-2019/INACAL-DA

Contrato N°: Adende al Contrato de Acreditación

Nº025-16/MACAL-DA

Registro Nº : LE-096

El presente carcificado tiene validas con su consepondiente Alcance de Acrestiación y cédala de notificación dado que el alcance pasde estar sujeto a ampliaciones, reducciones, estudianteses y suspensiones temporales fil alcance y vigencia dele confirmane en la págua web www.inicialgol/periorreditacion/categoria/acredit

La Dirección de Acreditación del INACAL se firmante del Accesso de Reconocemiento Multilateral (MLA) del later America: Accreditation Cooperation (IAAC) e International Accreditation
Forum (IAI) y del Accesso de Reconocemiento Matuo con la International Laboratory Accreditation Cooperation (ILAC)

Fecha de emisión: 24 de julio de 2019

CERTIFICATE OF ACCREDITATION

This is to attest that

ANALYTICAL LABORATORY E.I.R.L

OFFICE: PROLONGACION ZARUMILLA MZ D2 LOTE3 - BELLAVISTA-PROV. CONSTITUCIONAL DEL CALLAO-LIMA, PERU

LABORATORY: AV. GUARDIA CHALACA NO 1877 BELLAVISTA - PROV. CONSTITUCIONAL DEL CALLAO, LIMA, REPUBLIC OF PERU

Testing Laboratory TL-833

has met the requirements of AC89, *IAS Accreditation Criteria for Testing Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date August 3, 2021

IAS ACCREDITED

President

IAS is an ILAC MRA Signatory

Visit www.iasonline.org for current accreditation information.